随着Blackwell架构GPU与CXL内存扩展技术的商用化,倍联德正研发支持FP4精度计算的下一代服务器,预计将AI推理性能再提升2倍。公司创始人覃超剑表示:“我们的目标不只是提供硬件,更要通过软硬协同优化,让云边端协同像使用办公软件一样便捷。”从西安的智慧交通到宁波的智慧医疗,从重庆的轨道交通到东莞的智慧城管,倍联德实业有限公司正以全栈技术能力赋能千行百业,为全球智慧城市建设提供“中国方案”。在这场数字化变革中,这家深圳企业正用技术创新诠释“中国智造”的全球竞争力。联邦学习在云边端协同中实现跨域数据隐私保护,使医院、银行等机构可联合建模而不泄露原始数据。广东科研应用解决方案定制

倍联德GPU解决方案已渗透至医疗、科研、制造等关键领域,形成差异化竞争优势。在医疗影像分析领域,倍联德与多家三甲医院合作开发了基于GPU加速的数字孪生系统。某专科医院部署的G808P-V3工作站搭载双路AMD EPYC 7763处理器与4张RTX 5880显卡,可实时渲染8K分辨率的部位三维模型,配合AI辅助诊断算法,将肺结节检测准确率提升至99.2%,单例CT扫描分析时间从15分钟缩短至90秒。在材料科学领域,倍联德与中科院合作开发的液冷超算工作站集群,采用NVLink互联技术实现16张RTX 6000 Ada显卡的显存共享,使分子动力学模拟的原子数量从100万级提升至10亿级。在锂离子电池电解液研发项目中,该方案将模拟周期从3个月压缩至7天,助力团队快速筛选出性能提升40%的新型配方。智慧社区解决方案排行榜异构计算服务器融合CPU、GPU与FPGA,针对不同负载动态分配很优算力资源。

倍联德云边端协同解决方案已渗透至智慧城市、智能制造、智慧医疗等关键领域,形成从硬件到算法的完整能力:在重庆轨道交通COCC项目中,倍联德提供“边缘计算节点+全闪存存储系统”的组合方案,支持实时分析列车运行数据、客流信息与设备状态。通过运能运量匹配算法,系统将列车准点率提升至99.5%,乘客平均等待时间从15分钟降至3分钟。此外,其与华为合作开发的NoF+存储网络解决方案,已应用于30余家交通企业,实现50GB/s的带宽与微秒级延迟。针对汽车制造行业,倍联德推出“云+边+端”协同的智能监控平台:云端SERVER平台部署设备管理、算法训练与数据可视化模块;边缘E500系列服务器实时采集机械臂健康参数,通过“物联网+算法模型”预测故障隐患;终端HID系列医疗平板则支持无风扇设计,可在车间高温、高湿环境中稳定运行。例如,某汽车制造商采用该方案后,生产线良品率提升12%,设备停机时间减少45%。
倍联德为重庆交通开投集团打造的智慧交通平台,集成其全闪存存储系统与边缘计算节点,实现轨道交通COCC(控制中心)的运能运量匹配分析、客流预测等功能。例如,在“响应公交”场景中,系统通过大数据分析乘客定位、实时路况等信息,动态调度车辆,使乘客平均等待时间从15分钟降至3分钟,运营成本降低22%。在九识智能的低速无人配送项目中,倍联德提供定制化边缘计算设备,实时监控无人车健康参数并预测故障隐患。该方案已在全球超200个城市落地,使配送效率提升40%,运营成本下降35%。例如,在苏州工业园区,搭载倍联德设备的无人车日均配送量突破200单,错误率低于0.1%。存储服务器集群通过软件定义存储(SDS)技术,实现跨品牌硬件的统一管理与资源调度。

倍联德G800P系列AI服务器搭载8张NVIDIA RTX 6000 Ada显卡,单柜算力密度达500PFlops,支持多卡并行计算与混合精度训练。在深圳某自动驾驶测试场中,该服务器作为训练与推理的重要平台,实时处理激光雷达、摄像头等多传感器数据,将模型迭代周期从72小时压缩至8小时,同时通过NVLink互联技术实现显存共享,使单柜可支持10张显卡协同工作,满足L4级自动驾驶的算力需求。倍联德的“云边通道”技术,通过消息、数据、业务三通道实现云边资源的高效协同。例如,在宁波市综治平台中,边缘节点通过MQTT协议实时上传视频流至云端,云端AI模型分析后下发指令至边缘设备,实现占道经营、违规停车等事件的自动识别与处置,事件响应时间从15分钟压缩至90秒,人工巡查成本降低60%。该方案已通过UL60601-1医疗级认证,确保数据传输的安全性与合规性。单相浸没式液冷系统采用绝缘冷却液,可实现服务器完全无风扇运行,噪音降低至环境背景水平。广东智慧医疗解决方案
液冷技术通过直接冷却芯片表面,将数据中心PUE值降至1.1以下,大幅降低碳排放与运营成本。广东科研应用解决方案定制
针对高密度计算场景的散热难题,倍联德推出R300Q/R500Q系列2U液冷服务器,采用冷板式液冷设计,PUE值低至1.05,较传统风冷方案节能40%。以某三甲医院为例,其部署的R500Q液冷工作站搭载8张NVIDIA RTX 5880 Ada显卡,在运行6710亿参数的DeepSeek医学大模型时,单柜功率密度达50kW,但通过液冷技术将噪音控制在55分贝以下,同时使单次模型训练的碳排放从1.2吨降至0.3吨,相当于种植16棵冷杉的环保效益。倍联德自主研发的异构计算平台支持CPU+GPU+DPU协同工作,通过动态资源调度优化计算-通信重叠率。在香港科技大学的深度学习平台升级项目中,其定制化工作站采用4张NVIDIA RTX 4090显卡与至强四代处理器组合,配合TensorFlow框架实现98%的硬件利用率,使ResNet-152模型的训练时间从72小时压缩至8小时,而部署成本只为传统方案的1/3。广东科研应用解决方案定制