PBI聚合物的TGA曲线显示热阻在空气中>500℃,在N2中>600℃。纯PBI聚合物的特性如右表所示。这些值表示聚合物的“整体”特性。对于涂层来说,其性能可能会有所不同,具体取决于厚度和基材。PBI共混物的示例如图4所示,其中PBI与聚醚酮酮(PEKK)共混。这些共混物的研究结果表明混合物的Tg表示了主要成分。在60:40PBI:PEKK共混物中,Tg接近纯PBI聚合物的Tg。对于耐热性,PBI和PEKK都表现出良好的耐热性>500℃。PBI含量>80%的PBI:PEKK混合物略有改善。从混合物观察到的性能来看,可以在高温下提高Tg并减少重量损失。通过优先以反映大部分PBI的方式改变重量百分比,较终混合物开始反映相同的特性。PBI 塑料具有出色的耐高温性能,能在极高温度下保持稳定结构,应用于航空航天领域。上海PBI高温密封垫批发

1983年:塞拉尼斯公司在美国南卡罗来纳州罗克山的PBI聚合和纤维工厂投产。1989年:塞拉尼斯公司获得了头一项关于压模Celazole®PBI产品(U系列)的专业技术,随后在1991年又获得了头一项关于PBI-聚芳醚酮混合物(T系列)的专业技术。1994年:纽约市消防局指定使用PBI作为他们的防护装备,为市政消防局的个人防护设备设定了标准。到1996年,该产品已销往全球。如今,该公司的纤维已被全球公认为市场上性能较高、尺寸较稳定的阻燃纤维。1996:推出高纯度Celazole®PBI部件,并将其商业化,用于半导体和平板显示器的化学气相沉积、物理的气相沉积、蚀刻和相关制造工艺。PBI蜗壳厂家精选PBI塑料的市场价格相对较高,主要应用在高级市场。

微裂纹可能是由于这种改性PBl的抗拉强度和断裂韧性较低造成的,8000gmol^(-1)“活性”PBI表现出的流量略低,导致层压板的空隙率较高,但仍几乎是20000gmol^(-1)PBI层压板的一半。8000gmol^(-1)“活性”PBl层压板在低至2.07MPa的压力下成功加工,其机械性能与对照品相当。此外,这种PBl聚合物在高温下具有优异的性能。这可以通过将PBI视为传统热固性聚合物来解释,其机械性能(和Tg)较少依赖于初始分子量,而更多地依赖于交联密度,虽然确切的交联机制尚不完全清楚,但流变数据表明PBl端基起着至关重要的作用。对固化和“未固化”层压板的动态机械热分析(PolymerLaboratoriesDMTA)证实了这一结论。
尺寸变化:吸附在PBI中的水分会暂时改变部件的尺寸。这种暂时性变化在PBI干燥后是可逆的。表2说明了吸附水分对部件尺寸的影响。由于零件的几何形状千差万别,此表只能作为一个参考。还需注意的是,如果某种形状尚未达到与周围环境的湿度平衡,由于湿度扩散速度较慢,零件中会出现湿度梯度,表面可能比芯部更湿或更干。在这种情况下,从毛坯形状加工零件可能会导致翘曲或厚度变化。因此,在加工之前,请务必按照本文件后面的说明对形状进行适当干燥。PBI 塑料在装备制造中发挥重要作用,满足特殊环境下的使用要求。

这些层压板比对照层更薄(每层0.0122-0.0142英寸),空隙率也更低(0.7%-3.9%),显微照片检查显示所有8000gmol^(-1)封端层压板均出现微裂纹(图5),由于在6.9MPa(1000psi)下固化的20000gmol^(-1)PBI中也观察到了这种情况,因此认为这是由于这些层压板中的树脂含量非常低造成的。如上所述,这些层压板表现出较大的流动,但是,计算出的树脂含量并不支持这一结论。虽然这可能适用于在6.9MPa下固化的20000gmol^(-1)PBl,并且在较高压力下固化的封端PBI中观察到更大程度的微裂纹,但这并不能解释根本原因,层压板中的空隙有两种类型:层之间的大空隙和纤维束内的小空隙。后者随着固化压力的降低而成比例增加。总体而言,8000gmol-i层压板的质量随压力的变化似乎小于20000gmol^(-1)层压板。在水下探测设备中,PBI 塑料凭借其防水性和强度,保障设备正常工作。上海PBI高温密封垫批发
PBI塑料在化工、石油、制药等领域有普遍应用。上海PBI高温密封垫批发
聚苯并咪唑(PBI)属于酰亚胺化高性能聚合物,具有优异的耐热性和耐化学性以及良好的机械和摩擦学性能。其玻璃化转变温度(Tg)约为427℃,降解开始于约600℃。优异的性能使PBI成为摩擦磨损系统的材料,但在公开的信息中只能找到少数参考资料。在这里,摩擦学特性主要使用块状PBI样品和PBI与其他高温热塑性塑料(如PEEK)的混合物进行。由于块状PBI的成本非常高,因此以薄涂层的形式使用它更有意义,但直到较近才开发出溶解PBI并将其应用于这种薄层配置的新技术。因此,本文主要研究创新型PBI涂层的摩擦学,尤其关注这些涂层如何粘附在基材表面,以及在滑动和磨料磨损条件下可实现哪些性能。上海PBI高温密封垫批发