PLD-MBE与传统热蒸发MBE的对比。传统MBE依赖于将固体源材料在克努森池中加热至蒸发,其蒸发速率相对较低且稳定,非常适合III-V族(如GaAs)和II-VI族(如ZnSe)半导体材料的生长。然而,对于高熔点金属氧化物(如钌酸盐、铱酸盐),热蒸发非常困难。PLD-MBE则利用高能激光轻松烧蚀任何高熔点靶材,突破了源材料的限制,将MBE技术的应用范围极大地扩展至复杂的氧化物家族,实现了“全氧化物分子束外延”。
与金属有机化学气相沉积(MOCVD)的对比。MOCVD是大规模生产III-V族半导体光电器件(如LED、激光器)的主流技术,具有出色的均匀性和大规模生产能力。然而,MOCVD通常涉及高毒性和高反应活性的金属有机前驱体,设备与运营成本高昂,且存在碳污染风险。对于实验室阶段的新材料探索和机理研究,PLD和MBE系统提供了更洁净、更灵活、成本更低的平台,能够实现更高的真空度和更精确的原位监测,非常适合进行基础科学探索和原型验证。 负载锁室带差分泵系统,缩短样品更换时间。外延系统进口

软件编程在复杂薄膜结构生长中优势明显。对于具有复杂结构的薄膜,如超晶格结构,其由两种或多种材料周期性的交替生长而成,每层薄膜的厚度和成分都有严格要求。通过软件编程,科研人员可精确控制不同材料分子束的开启和关闭时间,以及相应的生长参数,实现原子级别的精确控制。以生长GaAs/AlGaAs超晶格结构为例,软件可精确控制GaAs层和AlGaAs层的生长厚度和成分比例,保证超晶格结构的周期性和准确性,从而获得具有优异电学和光学性能的薄膜,为高性能光电器件的制备提供了有力支持。多腔室分子束外延系统夹具高分子镀膜工艺研究,可借助基质辅助脉冲激光沉积系统实现。

与传统 MBE 技术对比,传统 MBE 技术在半导体材料、氧化物薄膜等材料生长领域应用已久,有着成熟的技术体系。然而,公司产品与之相比,在多个方面展现出独特优势。生长速率是一个重要对比点,传统 MBE 生长速率相对较慢,这在一定程度上限制了实验效率和生产效率。本产品通过优化分子束流量控制和激光能量调节,可在保证薄膜质量的前提下,适当提高生长速率,例如在生长 III/V 族半导体薄膜时,生长速率可比传统 MBE 提高 20% - 30% ,较大缩短了实验周期和生产时间,提高了科研和生产效率。
在新型二维材料与异质结的研究中,PLD系统也展现出巨大的潜力。除了传统的石墨烯、氮化硼外,科研人员正尝试使用PLD技术制备过渡金属硫族化合物(如MoS2)等二维材料薄膜。更重要的是,利用系统多靶位的优势,可以将不同的二维材料、氧化物、金属等一层一层地堆叠起来,构建出范德华异质结。这些人工设计的异质结构能够产生许多其母体材料所不具备的新奇光电特性,为开发新型晶体管、存储器、光电传感器和量子计算元件开辟了全新的道路。PLC与相应软件实现沉积工艺全流程自动化控制。

在宽禁带半导体材料研究领域,我们的PLD与MBE系统发挥着举足轻重的作用。以氧化锌(ZnO)为例,它是一种具有优异压电、光电特性的III-VI族半导体。利用PLD技术,通过精确控制激光能量、沉积气压(尤其是氧气分压)和基板温度,可以在蓝宝石、硅等多种衬底上外延生长出高质量的c轴择优取向的ZnO薄膜。这种薄膜是制造紫外光电探测器、透明电极、压电传感器和声表面波器件的理想材料。系统的RHEED监控能力可以实时优化生长条件,确保获得表面光滑、晶体质量高的外延层。分子束外延系统可实现原子级精度薄膜控制。外延系统进口
超高真空位移台若移动不畅,需清洁导轨并添加适用的润滑剂。外延系统进口
排气系统是维持超高真空环境的动力源泉。我们系统采用“分子泵+干式机械泵”的组合方案。干式机械泵作为前级泵,无需使用真空油,彻底避免了油蒸汽对腔室的污染,实现了洁净抽气。分子泵则串联其后,利用高速旋转的涡轮叶片对气体分子进行动量传递,将其压缩并排向前级泵,从而在生长腔室获得高真空和超高真空。这种组合抽气系统运行稳定、维护简单,且能提供洁净无油的真空环境,非常适合于对污染极其敏感的半导体材料和氧化物材料的生长。外延系统进口
科睿設備有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在上海市等地区的化工中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来科睿設備供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!