分光光度计相关图片
  • 北京实验室分光光度计工厂直销,分光光度计
  • 北京实验室分光光度计工厂直销,分光光度计
  • 北京实验室分光光度计工厂直销,分光光度计
分光光度计基本参数
  • 品牌
  • semert
  • 型号
  • suv-9900
  • 类型
  • 紫外可见光光度计,原子荧光光度计,火焰光度计,石墨炉原子吸收分光光度计、单光束分光光度计、便携式分光光度计
  • 焦距
  • 1200条/mm全息光栅
  • 波长范围
  • 190-1100
  • 电源电压
  • AC90-250
  • 适用范围
  • 生物,化学,成分检测,环境检测,色度计量
  • 加工定制
  • 重量
  • 12
  • 厂家
  • 广东
  • 外形尺寸
  • 480x340x220mm
  • 产地
  • 广州
  • 光源
  • 进口氘灯和钨灯
  • 显示器
  • 彩色图形液晶显示器
  • 单色器
  • Czerny-turner结构单色器
  • 处理技术
  • RISC处理技术
  • 存储
  • 500G大容量内存
分光光度计企业商机

    分光光度计在纺织行业的染料浓度与上染率检测中应用较多,是保证纺织品染色均匀性与色牢度的关键工具。以活性染料染色棉织物的上染率测定为例,活性染料在水溶液中呈特定颜色,其浓度与吸光度符合朗伯-比尔定律,可通过分光光度计监测染色前后染液的浓度变化计算上染率。具体步骤为:染色前,取一定体积的染液,用蒸馏水稀释至线性范围内,在染料的上限吸收波长(如活性红3BS的上限吸收波长为540nm)处测量吸光度A₀;染色完成后,收集残液,同样稀释后测量吸光度A₁,上染率(%)=(1-A₁×V₁/(A₀×V₀))×100%,其中V₀为初始染液体积,V₁为残液体积。检测过程中需注意,染液稀释倍数需根据染料初始浓度确定,确保吸光度处于的适合的线性区间;染色温度需保持恒定(如活性染料染色常用60℃±2℃),温度波动会导致染料溶解度变化,影响浓度测定。此外,分光光度计需定期校准波长准确性,若波长偏差超过±1nm,会导致吸光度测量误差增大,上染率计算偏差可能超过5%,进而影响纺织品染色工艺的调整与优化。水质检测中,分光光度计可检测水中污染物含量。北京实验室分光光度计工厂直销

北京实验室分光光度计工厂直销,分光光度计

    在环境监测领域,分光光度计凭借其高灵敏度、高准确性和操作简便的特点,被广泛应用于水质、大气、土壤等多种环境介质的污染物检测。在水质检测中,分光光度计可用于检测水中的化学需氧量(COD)、氨氮、总磷、重金属(如铜、锌、铅、镉)等指标。以COD检测为例,采用重铬酸钾法时,在强酸条件下,重铬酸钾将水中的还原性物质氧化,剩余的重铬酸钾与莫尔盐反应,通过分光光度计测量反应前后溶液在600nm左右波长处的吸光度变化,即可计算出COD值,该方法检测范围为50-700mg/L,适用于工业废水和生活污水的检测。氨氮检测则常采用纳氏试剂分光光度法,氨氮与纳氏试剂反应生成黄棕色络合物,在420nm波长处有较大吸收,通过测量吸光度可计算出氨氮浓度,检测下限为,能满足地表水和地下水的检测需求。在大气污染检测中,分光光度计可用于检测空气中的二氧化硫、氮氧化物、甲醛等污染物。例如,二氧化硫检测采用甲醛吸收-副玫瑰苯胺分光光度法,二氧化硫与甲醛反应生成稳定的羟甲基磺酸,再与副玫瑰苯胺反应生成紫红色络合物,在577nm波长处测量吸光度,该方法检测下限为³,可准确监测环境空气中二氧化硫的浓度变化。在土壤检测中。 北京实验室分光光度计工厂直销纺织行业用分光光度计检测染料的浓度和染色效果。

北京实验室分光光度计工厂直销,分光光度计

    分光光度计在实验中的酶活性测定中有较多的应用,以过氧化氢酶活性测定为例,过氧化氢酶可催化过氧化氢分解为水和氧气,在反应过程中,过氧化氢的浓度会逐渐降低,其吸光度也会随之下降。分光光度计可在240nm波长处实时监测过氧化氢溶液吸光度的变化,根据吸光度的下降速率计算过氧化氢酶的活性。通常以每分钟内吸光度下降为一个酶活性单位(U),酶活性(U/mL)=(ΔA×V总)/(ε×b×V样×t),其中ΔA为反应时间t内的吸光度变化值,V总为反应体系总体积(mL),ε为过氧化氢在240nm波长处的摩尔吸光系数(・mol⁻¹・cm⁻¹),b为比色皿光程(cm),V样为加入的酶液体积(mL),t为反应时间(min)。在实验过程中,需严格把控反应温度在25℃±℃,温度对酶的活性影响较大,温度过高会导致酶变性失活,温度过低则会降低酶的催化效率,均会影响酶活性的测定结果。同时,过氧化氢溶液需现配现用,过氧化氢易分解,放置时间过长会导致浓度降低,影响反应的初始速率。分光光度计需提前预热30分钟以上,确保仪器处于稳定的工作状态,避免因仪器不稳定导致吸光度测量波动,影响酶活性计算的准确性。

    分光光度计在催化剂性能评价中的应用主要通过监测反应体系吸光度变化,实现催化活性与选择性的加快分析。在光催化剂性能评价中,如二氧化钛(TiO₂)光催化降解甲基橙实验,甲基橙在464nm波长处有强吸收,吸光度与浓度呈线性关系(符合朗伯-比尔定律)。实验时将TiO₂光催化剂加入甲基橙溶液中,在黑暗条件下搅拌30分钟达到吸附-解吸平衡,随后用紫外灯(波长254nm)照射,每隔10分钟取样一次,离心分离催化剂后用分光光度计测量上清液在464nm处的吸光度,根据吸光度变化计算甲基橙的降解率(降解率=(A₀-Aₜ)/A₀×100%,A₀为初始吸光度,Aₜ为t时刻吸光度),降解率越高、降解速率越快,表明光催化剂活性越强。在酶催化剂活性评价中,如脂肪酶催化油脂水解反应,油脂水解生成脂肪酸,可通过加入酚酞指示剂,用NaOH溶液滴定脂肪酸,同时用分光光度计在550nm处监测溶液颜色变化(酚酞遇碱变红,吸光度随NaOH加入量增加而上升),根据吸光度变化曲线确定滴定终点,计算单位时间内脂肪酸的生成量,即酶活性(单位:U/mL,定义为每分钟催化生成1μmol脂肪酸所需的酶量)。此外,分光光度计还可用于评价催化剂的选择性,如在CO氧化反应中,通过检测反应前后CO。 分光光度计的光学系统需定期检查,确保光路正常。

北京实验室分光光度计工厂直销,分光光度计

    科研实验中,分光光度计是不可或缺的分析工具,在化学、材料科学、环境科学等多个学科领域的研究中发挥着重要作用。在化学研究中,分光光度计可用于研究化学反应动力学,通过测量不同时间点反应体系的吸光度变化,计算反应速率常数和反应级数,揭示反应的机理和规律。例如,在研究酸碱中和反应时,通过加入指示剂,利用分光光度计测量指示剂在不同反应时间的吸光度,根据吸光度变化曲线判断反应的进程和完成程度,进而分析反应的动力学参数。在研究中,分光光度计常用于核酸(DNA、RNA)和蛋白质的定量分析。核酸在260nm波长处有较大吸收峰,蛋白质在280nm波长处有上限值吸收峰,通过分光光度计测量核酸或蛋白质溶液在对应波长下的吸光度,结合相关公式(如核酸浓度(μg/mL)=A260×稀释倍数×50;蛋白质浓度(mg/mL)=A280×稀释倍数×-A260×稀释倍数×)可加快计算出其浓度,为后续的PCR扩增、蛋白质电泳、酶促反应等实验提供准确的样品浓度数据,确保实验结果的可靠性。在材料科学研究中,分光光度计用于分析新型材料的光学特性,如纳米材料的紫外-可见吸收光谱、薄膜材料的透光率和反射率等。例如,在研究二氧化钛纳米材料的光催化性能时。 在实验室中,分光光度计常用于分析样品的浓度。广东单光束分光光度计

分光光度计可用于研究物质在不同条件下的吸光特性。北京实验室分光光度计工厂直销

    分光光度计在化妆品领域的防晒剂二苯酮-3检测中应用严格,二苯酮-3作为常用紫外线吸收剂,其含量过高可能引发皮肤过敏,国家标准(GB)规定其在化妆品中的上限使用量为6%。分光光度计可通过液相色谱联用紫外检测(HPLC-UV)实现准确测定,也可通过直接紫外分光光度法进行筛查。筛查流程:将化妆品样品(如防晒霜)用乙醇超声提取30分钟,离心后取上清液,用乙醇稀释至适宜浓度,在二苯酮-3的上限吸收波长(288nm)处测量吸光度,结合二苯酮-3标准曲线计算含量。检测中需注意,超声提取功率需把控在300W,功率过高会导致乙醇挥发,浓度升高;若样品为乳液或膏霜类,需加入少量吐温-80乳化剂,防止提取液分层;稀释倍数需根据样品中防晒剂的预估含量确定,确保吸光度处于的适合的线性区间。分光光度计需在288nm波长处进行空白校正(乙醇空白),清理溶剂吸收干扰,筛查的相对误差需把控在±5%以内,为化妆品防晒剂的合规性初步检测提供数据。 北京实验室分光光度计工厂直销

与分光光度计相关的**
信息来源于互联网 本站不为信息真实性负责