按生产的方法来分,可分为发酵法酒精和合成法酒精两大类。按产品质量或性质来分,又分为高纯度酒精、无水酒精、普通酒精和变性酒精。按产品系列分:GB394-1981(已废止)曾将酒精分为优级、一级、二级、三级和四级,其中一、二级相当于高纯度酒精及普通精馏酒精,三级相当于医药酒精,四级相当于工业酒精。现行的GB/T394.1-2008将工业酒精分为优级、一级、二级和粗酒精四类。现行的GB10343-2008将食用酒精分为特级、优级和普通级三类。工业上一般用发酵法、合成法和联合生物加工法制取乙醇。发酵法是用淀粉原料(如谷类、薯类、玉米、高粱或野生植物果实)和糖质原料(如糖蜜、亚硫酸废液)等发酵,前者是主要的发酵原料。乙醇在轻工、医药、化工、建筑等不同领域均有普遍应用。凉山无水甲醇价钱
乙醇(ethanol)是一种有机化合物,结构简式为CH3CH2OH或C2H5OH,分子式为C2H6O,俗称酒精。乙醇在常温常压下是一种易挥发的无色透明液体,低毒性,纯液体不可直接饮用。乙醇的水溶液具有酒香的气味,并略带刺激性,味甘。乙醇易燃,其蒸气能与空气形成炸裂性混合物。乙醇能与水以任意比互溶,能与氯仿、乙迷、甲醇、丙铜和其他多数有机溶剂混溶。乙醇可用于制造醋酸、饮料、香精、染料、燃料等,医疗上常用体积分数为70%~75%的乙醇作消毒剂。乙醇在化学工业、医疗卫生、食品工业、农业生产等领域都有普遍的用途。泸州乙醇需要多少钱乙醇可以提高火箭发动机燃烧能力,实现更加高效的航天应用。
温室气体CO2和H2也是合成甲醇的优越原料。CO2是地球上较丰富的碳资源,在自然界中以CO2形式存在的碳含量远远大于煤、石油和天然气的含碳量。随着化石能源经济的发展,大量CO2排放带来的温室效应应严重威胁着人类的生存环境。利用CO2加氢合成甲醇燃料被认为是CO2洁净利用较经济的过程之一。由CO2和H2合成甲醇的方法已经众所周知,大规模工业化生产不存在技术障碍。当前没有大规模应用主要是受到原料H2供应的限制。目前H2主要是由不可再生的一次能源矿物燃料制取的。但从长远来看,H2可以通过电解海水、太阳能光解水和热化学循环分解水等方法大规模获得,是取之不尽、用之不竭的,其中电解海水所需的能量可以由核能和太阳能、风能、水能以及地热能等可再生能源提供,热化学循环分解水则可以利用核反应堆等产生的热作为热分解的能源;而CO2则可以很容易从发电厂、水泥厂和钢铁厂等工业废气中大量回收,或者由大气中直接提取。
醇可以用作消毒剂。醇消毒剂通常使用的是乙醇和异丙醇,它们在一定浓度下可以有效地杀死许多细菌和病毒。乙醇和异丙醇都是亲水性溶剂,可以破坏细菌和病毒的细胞膜,使其失去活性。醇消毒剂的杀菌效果与浓度和作用时间有关。在一定浓度下,醇可以迅速地杀死一些细菌和病毒,但对于一些较为耐受的病原体,需要更高浓度的醇和更长的作用时间才能达到杀菌效果。需要注意的是,醇消毒剂只能用于表面消毒,不能用于消毒内部人体组织或开放性伤口。此外,使用醇消毒剂时需要注意安全,避免接触眼睛、口腔和皮肤等敏感部位。长期饮用含乙醇的饮料可能会损害身体健康。
甲醇汽油是国标汽油和甲醇及添加剂按一定的比例调配而成的新能源燃料,通俗点讲,是一种"以煤代油"路径,可以作为汽油的替代物从而实现对原油的部分替代。据了解,当前市场上甲醇汽油以甲醇的含量作为燃料标记可分为三类(M后的数字表示甲醇汽油中甲醇的体积百分比):低醇汽油(M3-M5)。中醇汽油(M15-M30)。高醇汽油(M85-M100)。低碳、氧含量高、辛烷值高的特性,有利于充分燃烧,可有效提升发动机功率。热值低、着火性较差,如果不完全燃烧会产生酸性物质,容易导致发动机润滑油提前酸化等。我国具有富煤缺油少气的资源禀赋特点,原油和天然气资源的对外依存度较高。而我国煤炭资源中40%以上是高硫煤,这些高硫劣质煤不适宜直接作为发电或工业燃料,但可用于生产甲醇。目前我国煤基甲醇占比约为75%,其他利用焦炉气、煤层气等原料也可生产甲醇。乙醇可以用于作为印染剂,例如丝绸染色时就需要使用乙醇。泸州甲醇价钱
乙醇具有一定的毒性。凉山无水甲醇价钱
危险性:易挥发,易燃烧,刺激性。其蒸气与空气混合成炸裂性气体。遇到高热、明火能燃烧或炸裂,与氧化剂铬酸、次氯酸钙、过氧化氢、硝酸、硝酸银、过氯酸盐等反应剧烈,有发生燃烧炸裂的危险。在火场中,受热的容器有炸裂危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。侵入途径:吸入、食入、经皮吸收。健康危害:本品为神经系统系统抑制剂。首先引起兴奋,随后抑制。防护措施工程控制:密闭操作,加强通风。呼吸系统防护:一般不需要特殊防护,高浓度接触时可佩带过滤式防毒面具(半面罩)。眼睛防护:戴化学安全防护眼镜。身体防护:穿防静电的胶布防毒衣。手防护:戴一般作业防护手套(橡胶手套)。其他防护:工作完毕,淋浴更衣。保持良好的卫生习惯。凉山无水甲醇价钱
在乙酸分子中,由于羧基中的羟基氧原子的P电子云可以跟羰基里的π电子云从侧面发生重叠,形成了P-π共轭,使羟基氧原子的电子云向羰基转移,使氧、氢原子间的电子云密度降低,H-O键极性增强,氧氢键容易断裂,羟基氢原子容易电离,使乙酸显示出较强的酸性。显然苯酚和乙酸都有酸性,但由于苯酚中苯环虽然可以使羟基氧原子电子云密度降低,但这种作用较弱。所以,苯酚所显示的酸性较弱,甚至比碳酸还弱,不能使指示剂显色,不能与Na2CO3发生反应。而乙酸中虽然乙基使羰基电子云密度增大,但由于羰基氧原子的吸引和p-π共轭的形成,使羟基氧原子电子云密度降低的程度较苯酚强烈。因此,乙酸的酸性比苯酚强得多,可以使指示剂显色,也...