所谓的“短波 红外和“长波,红外通常就是指探测波谱范围为3~5um和8~14um的红外热像仪。两者各有千秋。
比如说:探测波谱范围为3~5um短波红外热像仪通常为制冷型红外热像仪,材料一般为:碲汞、锑化铟、铂化砗等,多用于测高温领域。分辨率一般较高,但由于制冷元件的成本高,导致价格贵。也正是制冷元件的故障率较高及制冷效果的衰退,导致其在工业领域使用范围的日见萎缩。而且,这些制冷仪器从开机到能够使用,通常要等10分钟左右--制冷器正常工作后,这在现场工作中是很不方便的。更不用谈制冷型红外热像仪相对比较重了;
非制冷红外热像仪的材料一般为:氧化钒、硅掺杂(或多晶硅),多为8~14um的红外热像仪。开机即用,成本较低,轻便小巧,维护方便,其探测器的稳定性及分辨能力相对较差(由于科技的发展,其分辨率也越来越高了)。被广泛应用于电力、化工、消防等领域。 Mikron 短波红外热像仪,帧率高,热成像好,实用高效。广西短波红外热像仪介绍
在应用领域方面,MIKRON持续拓展热像仪的应用范围。除了传统的工业、科研领域,MIKRON的热像仪还逐渐应用于智能安防、医疗健康等新兴领域。
例如,在智能安防领域,MIKRON的热像仪凭借其在夜间和恶劣环境下的优势,为安防系统提供了可靠的监测手段;在医疗健康领域,热像仪可以用于疾病的诊断监测,为医疗行业带来了新的技术手段。在产品设计方面,MIKRON注重产品的小型化和便携化。为了满足现场检测、户外作业等需求,MIKRON推出了一系列小型化、便携化的短波红外热像仪。这些产品不仅便于携带和操作,还具有良好的性能和稳定性,受到了用户的普遍欢迎。 广西短波红外热像仪介绍Mikron 短波红外热像仪,响应快,温度稳,质量可靠。
短波红外热像仪可用于分析材料的成分和结构和太阳能电池检测。
不同材料在短波红外波段的吸收和反射特性不同,通过热像仪对材料的红外辐射进行检测和分析,可以识别材料的种类、纯度以及内部的结构变化。例如,在地质勘探中,可用于分析岩石的矿物成分;在化学实验室中,可用于检测化学反应过程中物质的变化。
太阳能电池的性能与其工作温度密切相关。短波红外热像仪可以检测太阳能电池板在不同光照条件下的温度分布,帮助发现电池板中的热点、缺陷和效率低下的区域,对于提高太阳能电池的生产质量和性能评估具有重要意义。
上海明策电子科技有限公司的短波红外热像仪采用了先进的探测器和图像处理技术,能够实现高分辨率的成像。其分辨率可以达到 640×512 像素甚至更高,能够清晰地显示物体的细节和热分布情况。
短波红外热像仪可以检测的温度范围非常宽,从零下几十摄氏度到几百度甚至更高的温度都可以进行检测。这使得它在工业检测、科研等领域具有广泛的应用前景。
短波红外热像仪的响应时间非常快,可以在几毫秒甚至更短的时间内完成对目标物体的检测和成像。这使得它能够实时地监测物体的温度变化和热特性,为用户提供及时的反馈和决策依据。 Mikron 短波红外热像仪,高分辨率,热分布清晰,助力生产。
MIKRON 短波红外热成像仪具有以下优点:
短波红外波段具有一定的穿透能力,能够穿透烟雾、灰尘和雾气等干扰因素,在恶劣的环境条件下,依然可以获得清晰的热图像,对于一些复杂工况下的温度测量具有重要意义。
定制化能力强:可根据不同的应用需求定制特殊波段,例如为激光焊接、3D 打印等应用定制滤波片,避开激光波段的干扰,确保测量的准确性和稳定性。
高精度测量:测量精度高,通常可达到读数的 ±0.5%,能够为用户提供可靠的温度数据,有助于提高生产过程的质量控制水平和科学研究的准确性。
数据传输快速稳定:配备千兆以太网,数据传输速率可达 1000Mbit/s,能够快速传输大量的热图像数据和温度信息,方便用户进行实时监测和远程控制,也有利于后续的数据处理和分析14。 Mikron 短波红外热像仪,高分辨率,热分布明,助力科研。青海固定式短波红外热像仪
Mikron 短波红外热像仪,像素优,测温广,满足需求。广西短波红外热像仪介绍
消费者希望短波红外热像仪的操作界面简单直观,易于上手。热像仪应具备人性化的设计,操作流程简单明了,减少用户的学习成本和操作难度。例如,一些热像仪采用触摸屏设计,用户可以通过触摸屏幕进行操作,方便快捷。快速的数据传输和处理:在一些需要实时监测和数据分析的应用场景中,消费者需要热像仪能够快速地传输和处理数据。热像仪应具备高速的数据传输接口,如千兆以太网、USB 等,以便将采集到的数据及时传输到计算机或其他设备上进行处理和分析。例如,在电力巡检过程中,巡检人员需要将热像仪采集到的数据及时传输到后台系统,以便进行实时监测和故障诊断。广西短波红外热像仪介绍