技术融合:前沿科技赋能管理升级:数字孪生技术构建物理能源系统的虚拟镜像,模拟不同运行策略的效果。例如,某区域供热网络通过数字孪生模型预测管网热损失,优化热力站调度方案,减少热损10%。支持“假设分析”(What-if Analysis),评估新能源接入、设备改造等场景的影响。区块链技术构建透明、可信的能源交易平台。例如,某社区通过区块链聚...
查看详细 >>为了实现设备全生命周期管理的目标,企业可以采用多种策略和方法。例如,通过引入先进的设备管理系统和软件,实现设备信息的实时更新和共享,提高管理效率。同时,加强员工培训,提高员工对设备全生命周期管理的认识和技能水平,确保各项管理措施得到有效执行。此外,一些企业还通过引入物联网、大数据等先进技术,实现设备状态的实时监控和预测性维护,进一步提高设...
查看详细 >>在能源消耗日益增长、环保要求不断提高的背景下,如何实现高效、可持续的能源使用成为企业和社会关注的重点。能源管理系统(Energy Management System, EMS)应运而生,它通过智能化监测、分析和优化能源使用,帮助企业和机构降低能耗、减少碳排放,并提升运营效率。能源管理系统(EMS)是一套集成了硬件设备、软件平台和数据分...
查看详细 >>设备全生命周期管理系统,从采购到报废的智能化管理:“在现代工业生产和企业运营中,设备是主要资产之一,其管理效率直接影响企业的成本控制、生产安全和运营效益。传统的设备管理方式往往局限于维修和保养,缺乏系统性、数据化和智能化的支持。设备全生命周期管理系统(Equipment Lifecycle Management System, ELMS)...
查看详细 >>数据分析与优化策略:从“粗放管理”到“精细运营”:传统痛点:企业缺乏能耗分类统计,难以识别节能潜力点。系统解决方案:按区域、工艺、设备等维度分类统计能耗,结合同比、环比、排名分析,挖掘高耗能环节。基于大数据模型预测能耗需求,优化设备运行参数(如电机频率、锅炉温度)。案例:某钢铁企业:通过系统分析高炉、轧机等设备的能耗数据,发现某轧机效率低...
查看详细 >>在能源消耗日益增长、环保要求不断提高的背景下,如何实现高效、可持续的能源使用成为企业和社会关注的重点。能源管理系统(Energy Management System, EMS)应运而生,它通过智能化监测、分析和优化能源使用,帮助企业和机构降低能耗、减少碳排放,并提升运营效率。能源管理系统(EMS)是一套集成了硬件设备、软件平台和数据分...
查看详细 >>协同优化:打破能源管理“信息孤岛”:跨系统集成与数据互通与生产系统集成:将能源数据与ERP、MES、SCADA等系统联动,实现“能源-生产-成本”三流合一。例如,EMS与ERP对接后,自动生成能耗成本报表,无需人工汇总。与碳管理系统集成:基于能源消费数据自动计算碳排放量,支持碳配额管理。某企业通过EMS实现碳足迹追溯,满足欧盟CBAM等国...
查看详细 >>麒智设备管理系统进行持续的系统优化和升级,以保持系统的稳定性和功能的完善性。系统团队持续关注用户反馈和需求,根据用户的反馈和市场的变化,不断进行系统的改进和优化。通过修复漏洞、改善性能、增加新功能等方式,确保系统的稳定性和可靠性。此外,系统团队也会定期发布系统升级版本,引入新的功能和技术。用户可以根据自己的需要选择是否升级,以获得更多的功...
查看详细 >>尖峰平谷统计与分析帮助您精细掌握用电高峰:系统根据国家或地区规定的尖峰平谷时段划分标准,精细统计各时段的用电量,帮助您清晰了解企业用电高峰和低谷时段。优化用电策略:基于尖峰平谷数据分析,您可以合理调整生产计划,将高耗能设备安排在低谷时段运行,避开高峰时段,从而降低电费支出。降低电费成本:通过充分利用峰谷电价差,您可以有效降低电费成本,提高...
查看详细 >>在数字化转型浪潮下,现代企业设备管理面临着设备智能化程度提高带来的技术复杂度、全球化运营导致的设备分布环保法规日益严格提出的新要求、专业维修人才短缺的现实困境以及设备数据孤岛现象严重等多重挑战,这些因素共同促使企业寻求更先进的设备管理解决方案。设备全生命周期管理系统(ELMS)作为一套集成了信息技术、物联网技术和现代管理方法的综合性解决方...
查看详细 >>增强决策科学性,支撑战略规划:数据驱动的决策支持系统提供多维度能耗报告(如日/周/月/年统计、区域对比、设备效率排名),为管理层提供量化依据,辅助制定能源采购计划、生产调度策略、节能投资决策等。能效对标与持续改进系统支持与行业或历史数据对标,帮助企业识别差距,制定改进目标。例如,制造业企业通过系统对比同行业能效水平,明确提升方向,推动技术...
查看详细 >>设备全生命周期管理产生的数据具有体量大、类型多、速度快和价值密度低等典型特征,其中单台设备日均可产生GB级数据,这些数据既包括结构化数据也包含非结构化数据,要求系统具备实时或准实时处理能力,同时需要通过专业分析方法从海量数据中提取有价值的信息。机器学习在设备管理中的应用主要体现在基于深度学习的异常检测实现故障诊断、使用LSTM网络进行RU...
查看详细 >>