数学教学教具基本参数
  • 产地
  • 深圳
  • 品牌
  • 星河
  • 型号
  • XH
  • 是否定制
数学教学教具企业商机

比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d

等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b


相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理:

1.两角对应相等,两三角形相似(ASA)

2.两边对应成比例且夹角相等,两三角形相似(SAS)

直角三角形被斜边上的**成的两个直角三角形和原三角形相似

判定定理3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 小学数学圆柱面积演示教具。成都数学教学教具配置

成都数学教学教具配置,数学教学教具

三角函数定理

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

圆的定理

定理:过不共线的三个点,可以作且只可以作一个圆

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

定理:

1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

3.圆的切线垂直经过切点的半径

4.三角形的三个内角平分线交于一点,这点是三角形的内心

5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

6.圆的外切四边形的两组对边的和相等

7.如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

广安数学教学教具方案一站式中小学数学教具批发。

成都数学教学教具配置,数学教学教具

菱形定理

菱形性质定理1:菱形的四条边都相等

菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理1:四边都相等的四边形是菱形

菱形判定定理2:对角线互相垂直的平行四边形是菱形

正方形定理

正方形性质定理1:正方形的四个角都是直角,四条边都相等

正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

中心对称定理

定理1:关于中心对称的两个图形是全等的

定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

体积,几何学专业术语。当物体占据的空间是三维空间时,所占空间的大小叫做该物体的体积。体积的国际单位制是立方米。一维空间物件(如线)及二维空间物件(如正方形)都是零体积的。

当物体占据的空间是三维空间时,所占空间的大小叫做该物体的体积。示例1:木箱的体积为3立方米;2:电解水时放出二体积的氢与一体积的氧。

常用单位

立方米、立方分米、立方厘米、立方毫米棱长是1毫米的正方体,体积是1立方毫米棱长是1厘米的正方体,体积是1立方厘米棱长是1分米的正方体,体积是1立方分米棱长是1米的正方体,体积是1立方米 数学教具有小学数学教学中的应用。

成都数学教学教具配置,数学教学教具

基础数学知识在经济中的应用是源于市场经济的发展,随着我国市场经济的不断发展,用数学知识来定量分析经济领域中的种种问题,已成为经济学理论中一个重要的组成部分。根据分析人士的计算,从1969 年到 1998 年近 30 年间,就有19 位诺贝尔经济学奖的获得者是以数学作为研究的主要的方法,而这些人占了诺贝尔经济学奖获奖总人数的 63.3%。其原因主要是“数学”在经济理论的分析中有着尤为重要的作用,其主要作用有以下几点:

1、运用精炼的数学语言陈述经济学研究中的假设前提条件,使人一目了然。

2、运用数学思维推理论证经济学研究的主要观点,使条理更加清晰,逻辑性更强。

3、运用大量的统计数据让论证得出的结论更具有说服力。


小学数学体积演示教具。成都数学教学教具配置

几何图形认知教具--钉板。成都数学教学教具配置

点的定理:

1、过两点有且只有一条直线

2、两点之间线段**短

角的定理:

1、同角或等角的补角相等

2、同角或等角的余角相等

直线定理:

1、过一点有且只有一条直线和已知直线垂直

2、直线外一点与直线上各点连接的所有线段中,垂线段**短


平行定理:经过直线外一点,有且只有一条直线与这条直线平行

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行

两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 成都数学教学教具配置

深圳市星河教学用品有限公司是一家贸易型类企业,积极探索行业发展,努力实现产品创新。公司是一家私营合伙企业企业,以诚信务实的创业精神、专业的管理团队、踏实的职工队伍,努力为广大用户提供***的产品。公司始终坚持客户需求优先的原则,致力于提供高质量的教学教具,教学器材,教学仪器,教学用品。星河以创造***产品及服务的理念,打造高指标的服务,引导行业的发展。

与数学教学教具相关的文章
广东公立 数学教学教具
广东公立 数学教学教具

数学教具的特点: 数学教具通常具有直观性,它们可以将抽象的数学概念具体化,方便学生理解和掌握。例如,几何体可以帮助学生理解三维空间的概念,角度器则可以让学生直观地感受角的大小。 数学教具的另一个特点是操作性。通过亲手操作教具,学生可以更加深入地理解数学知识的内在联系。例如,在拼图游戏...

与数学教学教具相关的新闻
  • 青海九年制数学教学教具 2024-12-22 03:00:37
    数学知识具有很强的抽象性,很多概念、公式和定理对于初学者来说难以直观地理解。而教具的使用,可以将这些抽象的知识转化为具体的、可见的形式,从而增强学生的直观感受,降低学习难度。例如,在几何教学中,教师可以使用各种几何模型来帮助学生理解几何图形的性质。通过观察和操作这些模型,学生可以直观地感受到点、线、...
  • 福建数学教学教具 2024-12-22 20:00:58
    创新是民族进步的灵魂,也是数学教育的重要目标之一。教具的使用,可以为学生提供广阔的创新空间,促进他们创新思维的发展。例如,在数学创意课程中,学生可以利用各种教具进行创意设计和制作。通过发挥自己的想象力和创造力,学生可以制作出独具匠心的数学作品,体验到创新的乐趣。此外,教具还可以作为学生开展数学探究活...
  • 计量单位长度、面积和体积以及其同类量之间的进率质量单位和他们之间的进率1吨=1000千克一千克=1000克时间单位进率、人民币进率1小时=60分钟1分钟=60秒1块=10角比与比例正比例、反比例、化简比、求比值、比与分数、除法联系、比、比例、可以用比例解应用题图形与空间图形、空间、周长、面积、侧面积...
  • 福州公立 数学教学教具 2024-12-21 21:00:43
    定义定理公式1.加法交换律:两数相加交换加数的位置,和不变。2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3.乘法交换律:两数相乘,交换因数的位置,积不变。4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。...
与数学教学教具相关的问题
与深圳市星河教学用品有限公司相关的扩展资料【更多】
深圳市星河教学用品有限公司于2016年04月21日成立。法定代表人罗清,公司经营范围包括:一般经营项目是:教学仪器设备、服装、教具、玩具、模型、教育软件、实验室仪器及成套设备、功能教室设备、多媒体电教设备、录播系统设备、三维打印机、机器人、数控设备、电子产品及器材、办公设备、通用机械设备、计算机软硬件、移动设备软硬件、移动穿戴设备、电子设备、舞台音响灯光设备、制冷设备、监控设备、测量设备、厨房设备、饮水设备、安防设备、陶艺设备、通信产品、机床、化工仪器、文化用品、体育器材、音乐乐器、美术用品、工艺品(象牙及其制品除外)、实验室家具、办公家具及桌椅、学生床、课桌椅销售;室内外装饰工程;计算机系统集成、计算机周边设备及配件、办公设备及周边产品销售;货物及技术进出口;国内外贸易等。
信息来源于互联网 本站不为信息真实性负责