0.10g/mL的三甲基氢醌适合于该工艺。氢气压力的影响:当氢气压力从0.4MPa增加到0.8MPa时,TMBQ的转化率和反应时间几乎没有变化。观察到TMHQ的氢化产率先升高后降低。氢化产率的峰值出现在0.6MPa的氢气压力下。氢气压力对于氢气在反应体系中的溶解度和所提出机理的吸附步骤是必不可少的。当氢气压力低时,反应速度变慢。在一定范围内,氢气压力的升高将有利于氢分子的扩散和吸附。然而,当压力升高到较高水平时,压力对反应速率的积极影响将不会很明显。三甲基苯醌路线合成三甲基氢醌,根据原料以及反应中间产物的种类,可将TMBQ的生产工艺分为三大类。河南三甲基氢醌熔点
氢化反应的第1步是三甲基氢醌分子和氢原子在催化剂表面上的平衡吸附。第2步是第1次加入活化氢以形成过渡态A-Pd(物质A是4-羟基-2,3,6-三甲基-2,5-环己二烯酮的自由基中间体)。然后,物质A从催化剂表面解吸并迅速异构化成更稳定的物质B(TMHQ的自由基中间体),其含有苯基结构的电子共轭。驱动力使得从A到B的异构化反应非常有效,这有助于解释观察到的高加氢产率。第二次向物质B中加入活化氢导致产物TMHQ的形成。然后,产物从催化剂表面解吸并完成该催化循环。四川三甲基氢醌厂家目的:改进维生素E中间体2,3,5-三甲基氢醌生产工艺。
三甲基氢醌均相催化系有:磷钼酸或硅钼酸/CuS02催化体系;磷钼酸/二甲亚砜叔丁醇钾催化体系;金属邻羟基苯甲醛络合物;乙酰钒,钒酸钠;四苯基卟啉锰氯(TPPMnCl);N羟基邻苯-甲酰亚胺/CuCl2等。多相催化体系有:负载的金属(salen);钌负载的镁铝水滑石;Cu/Co/Fe负载的镁铝水滑石;钼钒磷酸盐负载的活性炭等。氧代异佛尔酮的重排和酰化:在催化剂存在下,KIP与酰化剂(如酰酐、酰卤或烯醇酯)发生酰化反应生成TMHQ-DA,再经皂化生成三甲基氢醌醋酸酯(TMHQ-1-MA)或者TMHQ。TMHQ-1-MA可直接与异植物醇反应生成维生素E的主要成分a-维他命E。
当通过流蒸馏完全除去溶剂时,加入1.2gNa2S2O4并将混合物在30min内冷却至室温。过滤后,将分离的湿TMHQ在70℃下干燥3h,得到产物。分析:使用外标法通过反相HPLC(C18,ϕ4.6×150×mm2)分析三甲基氢醌样品。流动相为甲醇/水(50/50,v/v),流速保持在1.0mL/min。测量波长为280nm。氢化摩尔产率定义为通过HPLC测定的滤液中TMHQ的摩尔数与当初在反应中取得的TMBQ的总摩尔数之比。总摩尔产率定义为分离的TMHQ产物的摩尔数与当初在反应中取得的TMBQ的总摩尔数之比。反应时间定义为从间歇输入氢气开始到反应结束的时间。三甲基氢醌是合成维生素E的重要中间体,国内企业主要采用对羟基。
三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)为黄色针状结晶,熔点32℃(38-29.5℃),沸点53℃。在三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)的汽油(或石油醚)溶液中,搅拌下加入保险粉溶液,室温搅拌3h,过滤,滤饼用0.5%保险粉溶液洗涤,干燥,得三甲基对苯二酚。溶解性:溶于乙醇等极性溶剂,微溶于冷水、石油醚、苯等溶剂,溶于热水,受热或暴露于空气中易氧化变色。对水是危害的,不要让该产品接触地下水,水道污水系统,即使是小量该产品渗入地下水也会对饮用水造成危害,对水中有机物质有毒。偏三甲苯法综合经济效益好。南京药用三甲基氢醌
三甲基氢醌发明制备方法简化了操作程序,缩短了周期,减少溶剂回收损失,提高了收率和产品质量。河南三甲基氢醌熔点
三甲基氢醌关键技术一:催化空气氧化2,3,6-三甲基苯酚技术:采用新型催化体系,反应底物浓度提高2到5倍,在国际技术领域内尚无相关文献资料报道,本技术属**。关键技术二:2,3,5-三甲基苯醌催化加氢技术:采用特定的负载工艺和还原工艺,配套特殊结构的反应设备,提高了加氢反应的时空效率。关键技术三:2,3,5-三甲基苯醌分离纯化技术:“三位一体”分离纯化——粗分离+静置+精分离技术及配套关键装置关键技术四:三甲基氢醌分离纯化技术:“2+1”产品分离纯化——溶剂回收与产品提纯装置组合+产品质量控制系统。河南三甲基氢醌熔点