锂 - 二氧化锰(Li-MnO₂)扣式电池:型号以 “CR” 开头(如 CR2032、CR1632),是目前应用较普遍的扣式锂原电池类型。正极采用二氧化锰(MnO₂),负极采用金属锂(Li),电解质为有机电解液(如碳酸丙烯酯与锂盐的混合体系)。该类电池放电电压稳定(标称电压 3.0V),工作温度范围宽(-20℃至 60℃),适用于大部分消费电子设备,占扣式锂原电池市场份额的 80% 以上。锂 - 氟化碳(Li-CFₓ)扣式电池:型号以 “BR” 开头(如 BR2032、BR1220),正极采用氟化碳(CFₓ),负极同样为金属锂,电解质为非水电解液。其优势在于极低的自放电率(年自放电率<2%)和优异的低温性能(可在 - 40℃正常工作),但标称电压较低(2.8V),能量密度略低于 Li-MnO₂电池,主要用于对稳定性和低温性能要求高的场景(如医疗传感器、工业控制设备)。广泛应用于电子表、心率监测仪等低功耗设备。南通CR1620扣式锂电池厂家供应

钴酸锂具有层状结构,理论容量为274mAh/g,实际应用中可达140mAh/g以上,工作电压高达3.6-3.7V,能够显著提高电池的能量密度。三元材料则通过调整镍、钴、锰的比例,在容量、电压、循环寿命和安全性之间取得平衡,例如NCM523(Ni:Co:Mn=5:2:3)的容量可达160-180mAh/g,工作电压与钴酸锂相当,且成本低于钴酸锂,逐渐成为中扣式锂电池的优先正极材料。负极材料方面,金属锂凭借其优异的电化学性能,一直是扣式锂电池的主流选择。但金属锂在循环过程中容易形成枝晶,可能刺穿隔膜导致短路,存在安全隐患,同时也会降低电池的循环寿命。CR2032扣式锂电池厂家供应电子腕表的重心动力源,为指针驱动模块提供持久稳定的微电流输出。

扣式锂电池,因外形呈圆形纽扣状而得名,官方名称为“扣式圆柱形锂电池”,是一类直径通常在5-25mm、厚度在1-6mm之间的小型密闭式锂电池。其重心定义为:以锂金属或锂合金为负极活性物质,采用非水电解质体系,通过电化学氧化还原反应实现能量存储与释放的微型储能器件。与传统的碳性扣式电池(如LR44)、碱性扣式电池(如AG13)相比,扣式锂电池在能量密度、循环寿命与工作温度范围上具有明显优势,尤其在低功耗、长待机的微型电子设备中,其不可替代性日益凸显。
90 年代,锂离子蓄电池技术取得突破,索尼公司于 1991 年商业化锂离子电池后,扣式锂离子蓄电池(LIR 系列)随之研发成功,填补了微型二次电池的市场空白,为可穿戴设备的发展提供了能源支持。进入 21 世纪后,扣式锂电池朝着 “更小体积、更高容量、更安全” 的方向发展。一方面,通过改进电极材料(如采用纳米级二氧化锰、高导电性石墨)和优化电解液配方,能量密度持续提升,例如 CR2032 电池的容量从早期的 200mAh 提升至现在的 240-280mAh;另一方面,安全设计不断升级,如采用防爆阀、防漏液密封结构,降低电池漏液和风险。如今,扣式锂电池已形成完整的产品体系,成为微型电子设备产业链中不可或缺的关键环节。工作温度范围一般为-20℃至60℃,高温易引发安全隐患。

在微型电子设备蓬勃发展的当下,从智能手表、蓝牙耳机到医疗血糖仪、汽车遥控钥匙,这些小巧精致的产品对能源供给提出了 “微型化、高容量、长寿命、高安全” 的严苛要求。扣式锂电池凭借其紧凑的结构、稳定的放电性能和出色的循环寿命,成为满足这类需求的重心能源解决方案。作为锂电池家族中的 “迷你成员”,扣式锂电池虽体积微小,却在消费电子、医疗健康、工业控制等领域发挥着不可替代的作用。扣式锂电池(Button Lithium Battery),又称纽扣锂电池或扣式锂原电池 / 蓄电池,是一种外形呈圆形纽扣状(直径通常在 5-20mm,厚度 2-7mm)、以锂离子或锂金属为重心电化学反应载体的微型储能装置。表面激光刻印型号参数,便于快速识别规格,简化库存管理流程。苏州超创扣式锂电池厂家供应
自放电率低,长期存放后仍能保持较高电量。南通CR1620扣式锂电池厂家供应
隔膜与电解质:隔膜通常采用 PP/PE/PP 三层复合膜,相较于单层膜,具有更优异的耐高温性能和机械强度,可在电池温度过高时熔化,阻断锂离子迁移,实现 “热关闭” 功能,提升安全性。电解质与锂原电池类似,但会添加少量添加剂(如成膜添加剂、抗过充添加剂),改善电池的循环性能和安全性能。外壳封装:除了传统的不锈钢外壳,部分小型扣式锂离子蓄电池采用铝塑膜封装(软包结构),具有重量轻、体积灵活的优势,适用于对重量和厚度要求苛刻的可穿戴设备(如智能手环)。南通CR1620扣式锂电池厂家供应
扣式锂原电池的工作基于锂金属与正极活性物质的不可逆氧化还原反应,具体过程如下:负极反应(氧化反应):金属锂(Li)在负极表面失去电子,生成锂离子(Li⁺)和自由电子(e⁻),反应式为:Li → Li⁺ + e⁻。自由电子通过外部电路(设备的导电回路)流向正极,为设备提供电能;锂离子则在电解质中迁移,穿过隔膜,向正极移动。正极反应(还原反应):正极的二氧化锰(MnO₂)接受来自外部电路的电子,与迁移至正极的锂离子发生反应,生成锂锰氧化物(LiMnO₂),反应式为:MnO₂ + Li⁺ + e⁻ → LiMnO₂。总反应:将正负极反应结合,得到电池的总反应式:Li + MnO₂ → LiMnO₂。...