类型与选型指南
根据结构、测量范围和应用场景,电流探头可分为以下类型:
钳形电流探头特点:非接触式测量,直接夹持导线,适用于大电流(如工业电力系统)。应用:电机电流监测、三相电测量。
柔性罗氏线圈探头特点:无磁芯设计,柔性线圈环绕导线,适合高频大电流脉冲(如逆变器测试)。应用:雷电冲击试验、开关电源分析。
高频电流探头特点:带宽超过50MHz,专为快速瞬态电流分析设计。应用:EMI诊断、数字电路测试。
低电流探头特点:高灵敏度,可测量μA级微小电流。应用:低功耗电子设备、生物电信号检测。
选型建议:
带宽:高频应用需选择≥50MHz的探头。
电流范围:预留20%余量,避免过载损坏。
精度:精密测量场景选择误差≤±1%的探头。
上升时间:数字电路测试选择<10ns的型号。
输出接口:确保与示波器或数据采集设备兼容(如BNC、USB)。 差分探头的重要指标之一是带宽。钳形表柔性电流探头

N系列差分探头:
适用于大多数电路测试领域,尤其是电机电路测试。
应用领域包括浮地电压测量、开关电源设计、逆变、UPS电源、变频器、电子镇流器设计等。
有源差分探头可将任意间的两点浮接信号转换成对地的信号,以供示波器、电表或计算机使用。
使用频宽高达200MHz,非常适合大电力测试、研发、维修使用。
BNC接口可兼容任何品牌示波器使用,1:500/50根据不同量程选择测试档位。
示波器探头对测量结果的准确性以及正确性至关重要,它是连接被测电路与示波器输入端的电子部件。较简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。简单的探头没有采取屏蔽措施很容易受到外界电磁场的干扰,而且本身等效电容较大,造成被测电路的负载增加,使被测信号失真。 钳形表柔性电流探头钳式电流探头(也称为钳形交直流电流探头)在电流测量领域扮演着重要的角色。

电流探头分成AC电流探头和AC/DC电流探头。目前示波器上的电流探头基本分成两类:即AC电流探头和AC/DC电流探头,AC电流探头常见的是无源探头,成本低,但不能处理直流分量;AC/DC电流探头通常是有源探头,分为低频探头和高频探头,低频探头常见的带宽在几百KHZ以下,高频探头带宽一般在几MHZ以上。PinTech品致研发出具有更高的稳定性和准确性高频电流探头。PT-320是一款可以同时测量直流和交流的高频电流探头,这款高频交直流电流探头采用先进的磁电传感器,产品坚固耐用
示波器差分探头是一种用于测量两个测试点之间电压差(差分信号)的电子测量工具,其作用是抑制共模噪声、提取有效差分信号,提供高精度、抗干扰能力强的测量结果。
抑制共模干扰
差分探头通过差分放大器电路,对两个输入端的信号进行相减处理,有效消除公共噪声(如电源噪声、电磁干扰)和地电位差的影响,确保测量结果的准确性。
浮地系统测量
适用于无明确接地参考点的浮地系统(如三相供电、电机驱动电路),避端探头因接地回路导致的短路风险或测量误差。
高精度信号捕捉
在高频信号和噪声环境下,差分探头能提供更清晰的信号波形,帮助工程师分析信号质量、定位故障源。 品致差分探头设有两种供电模式,人性化设计,内设自动归零。

科研与高频信号研究
应用场景:物理实验、材料科学研究中测量高频信号(如射频电路、光电器件),或需要高精度采样的场景。
具体需求:科研实验对信号完整性要求极高,差分探头可提供无失真测量。高频信号(如雷达、卫星通信)需高带宽探头(如1GHz以上)捕捉快速变化。
案例:在量子计算实验中,差分探头测量微弱差分信号,确保实验数据准确。
根据测量需求选择探头带宽(如1GHz用于高速数字信号,100MHz用于电源噪声)、电压范围(如低压探头用于信号完整性分析,高压探头用于电力电子)及CMRR(共模抑制比,越高抗干扰能力越强)。 差分探头是示波器的一种测量探头,主要用于观测差分信号。钳形表柔性电流探头
品致差分探头BNC接口可兼容任何品牌示波器,测试精度为1%。钳形表柔性电流探头
通信系统测试
测量高速USB、光纤通信等差分信号,捕捉上升时间、下降时间和抖动特性,确保信号完整性。评估通信设备传输性能,优化信号质量。
电源管理与电机驱动
测量开关电源噪声电压,定位噪声源并抑制干扰。监测逆变器、变频器等设备的高压差分信号,进行故障诊断和性能评估。在电动汽车中,测试电池管理系统和电机控制系统的高压信号。
工业自动化与航空航天
监测工业设备运行状态,提高生产效率。测量飞行器、卫星等设备的差分信号,分析飞行状态和运行稳定性。
科研实验与高频信号
分析在物理和材料科学研究中,测量高电压信号,获取实验数据。捕捉高频信号(如射频电路),确保信号无衰减和反射。 钳形表柔性电流探头