溶氧电极的结构组成决定了其性能与应用范围。它一般由阴极、阳极、电解质和塑料薄膜构成。阴极作为反应的关键部位,对材料要求苛刻,像白金或银的纯度需达 99.999% 以上,且极谱型电极的阴极表面做得很小,直径通常在 1 - 50μm 范围,以形成微小的还原电流,这也意味着需要专门的电子放大装置辅极多做成圆筒状,表面积比阴极大数十倍,材料同样要求高纯度。电解质常见的有 KOH、KCl、醋酸铅等,用于维持电极内部的电荷平衡。塑料薄膜如聚四氟乙烯(F4)或其共聚体,需具备耐高温(>200℃)、透气性能好的特点,且膜的厚度有讲究,一般在 0.01 - 0.05mm,膜对氧的高透性和对 CO₂ 的低透性对电极响应极为重要 。医疗领域的溶氧电极可监测人工肺或细胞培养箱内的氧分压。武汉生物合成学用溶解氧电极

在酿酒葡萄种植园,溶氧电极开始发挥独特价值。土壤中的溶氧水平,直接影响葡萄根系的生长与养分吸收,进而决定葡萄果实的品质。通过在葡萄园土壤不同深度部署溶氧电极,种植者能实时获取土壤溶氧数据。在干旱期,当土壤溶氧因水分缺失而升高时,可适时灌溉,维持根系正常呼吸;在雨季,若溶氧因积水降低,能及时排水,防止根系缺氧腐烂。凭借精细的溶氧调控,种植园可培育出风味更浓郁、糖分更充足的酿酒葡萄,为葡萄酒生产筑牢基础 。北京不锈钢溶解氧电极通过溶解氧电极的实时监测,可快速识别发酵异常(如污染或代谢停滞)。

在微生物工程和生物技术领域,溶氧电极能够提供准确的溶氧监测数据,溶氧电极能够实时、准确地监测发酵过程中的溶解氧浓度。在工业发酵过程中,光学溶氧电极相对于传统极谱氧电极具有精度高、漂移小、响应快等优点。例如,在青霉素发酵过程中,培养液中的溶解氧浓度对菌体的代谢过程及终端产物的生物合成起着决定性的作用。微基智慧科技的 VD-2021i-A系列 溶氧电极在青霉素 G 发酵过程中的应用,为发酵过程提供了重要的指导意义。当培养液中的溶解氧浓度高于菌体生长所需的临界值时,菌体的呼吸不受影响,青霉菌的各种代谢活动正常进行;而当溶解氧浓度低于临界值时,菌体的多种生化代谢会受到影响,严重时会产生不可逆的抑制菌体生长和产物合成异常现象
溶氧电极在实际应用中,需根据不同的场景和需求选择合适的类型和规格。在实验室研究中,可能更注重电极的测量精度和灵敏度,可选择高精度的极谱型溶氧电极,并搭配专业的数据采集和分析设备。在大规模的工业生产中,除了考虑精度,还需关注电极的稳定性、耐用性以及维护的便捷性,以满足长时间连续运行的需求。在野外环境监测中,则要选择适应恶劣环境条件,如抗腐蚀、耐高低温的溶氧电极,并配备可靠的电源和数据传输装置 。微基智慧科技(江苏)有限公司溶氧电极在土壤呼吸研究中测量微环境氧含量,评估生态系统碳循环。

溶氧电极稳定性对测量结果的影响,1、测量一致性:稳定性好的溶氧电极能够在不同时间和不同环境条件下保持测量结果的一致性。例如,在连续测量过程中,稳定性好的溶氧电极能够提供稳定的电流响应,从而确保测量结果的可靠性。在一些需要长期监测溶氧水平的应用场景中,如水产养殖、污水处理等,溶氧电极的稳定性尤为重要。如果溶氧电极稳定性差,可能会导致测量结果波动较大,难以准确判断溶氧水平的变化趋势。2、抗干扰能力:稳定性好的溶氧电极通常具有较强的抗干扰能力。在实际应用中,溶氧电极可能会受到温度、盐度、pH值等因素的影响。稳定性好的溶氧电极能够在一定程度上抵抗这些干扰因素的影响,保持测量结果的准确性。例如,在对不同材料的溶氧电极进行评估时,发现一些电极在典型参数设置下(如pH4.0和7.4)能够保持较好的稳定性,且与盐度、pH等因素的相关性较小。3、长期使用成本:稳定性好的溶氧电极通常具有较长的使用寿命,从而降低长期使用成本。如果溶氧电极稳定性差,可能需要频繁更换电极,增加使用成本。此外,不稳定的溶氧电极还可能导致测量结果不准确,从而影响生产过程的控制和优化,带来更大的经济损失。极端环境(如深海、极地)对溶氧电极的耐压、耐低温性能提出更高要求。不锈钢溶解氧电极厂家
溶氧电极测量时需搅拌溶液,减少液膜阻力对氧传质的影响。武汉生物合成学用溶解氧电极
溶氧电极与其他传感器的协同作用,在发酵罐厂中,溶氧电极通常与其他传感器协同工作,如pH电极、温度传感器等。这些传感器共同监测发酵过程中的各种参数,为发酵过程的优化提供完整的数据支持。例如,pH电极可以监测发酵液的酸碱度,温度传感器可以监测发酵液的温度。通过综合考虑这些参数,可以更好地控制发酵过程,提高发酵产物的产量和质量。不同的发酵工艺对溶氧水平的要求不同。例如,在好氧发酵过程中,需要较高的溶氧水平,以满足微生物的生长和代谢需求;而在厌氧发酵过程中,则需要较低的溶氧水平,甚至是无氧环境。溶氧电极可以根据不同的发酵工艺要求,实时监测溶氧水平,并为调整发酵条件提供依据。在实际应用中,需要根据具体的发酵工艺选择合适的溶氧电极,并进行合理的安装和调试,以确保其能够准确地测量溶氧水平。武汉生物合成学用溶解氧电极
淀粉液化芽孢杆菌、出芽短梗霉和短梗霉,在生物发酵产酶过程中对溶氧电极水平的具体需求和差异说明。1、淀粉液化芽孢杆菌(Bacillus amyloliquefaciens)BS5582 在 IOL - 全自动发酵罐规模生产 β- 葡聚糖酶时,通过控制通气量、罐压和搅拌转速进行溶氧优化。在装液量 6L,接种量 6.67%,发酵温度 37℃的条件下,优化后通气量 9L/min,搅拌转速 600r/min,罐压 0.6MPa,β- 葡聚糖酶酶活在 44h 达到 511U/mL,比优化前提高了 122.76%。2、从自然界中分离筛选出的短梗霉菌株 ipe-3 和 ipe-5,经 2.7L 发酵罐发酵。研...