锂电池保护板是锂离子电池组的"大脑",对电芯(组)进行统一的监控、指挥及协调。从构成上看,电池保护板包括电池管理芯片(BMIC)、模拟前端(AFE)、嵌入式微处理器,以及嵌入式软件等部分。锂电池保护板根据实时采集的电芯状态数据,通过特定算法来实现电池组的电压保护、温度保护、短路保护、过流保护、绝缘保护等功能,并实现电芯间的电压平衡管理和对外数据通讯。电池管理芯片(BMIC)是电源管理芯片的重要细分领域,包括充电管理芯片、电池计量芯片和电池安全芯片。充电管理芯片可将外部电源转换为适合电芯的充电电压和电流,并在充电过程中实时监测电芯的充电状态,调整控制充电电压、电流,确保对电芯进行安全、高效的充电。根据锂电池的特性,充电管理芯片自动进行预充、恒流充电、恒压充电,有效控制充电各个阶段的充电状态。 锂电池保护板还会对电池包进行信息的管理,包含数据的整车交互以及日志的存储。特种车辆锂电池保护板系统

锂电池保护板也可以按照串数和持续放电电流大小来分。串数比较好理解,常见的7串(三元24v),13串(三元48v),17串(三元60v),20串(三元72v)。保护板需要采集每一串电芯的电压,因此串数不同,保护板是不同的。而电流大小,就是决定了MOS开关的大小(MOS数量),MOS数量越多,BMS保护板的价格就越高,对价格的影响很关键。铁锂常见的就是15/16串48v,20串60v,24串72v。锂电池体积小、可拆卸提出,方便用户充电,降低电池被盗风险。硬件锂电池保护板软件开发电池包保护板设计中需要考虑的因素较多,如电压平台问题。

锂电池保护板的被动均衡技术顾名思义,被动均衡就是将单体电池中容量稍多的个体消耗掉,实现整体的均衡。被动均衡又称为能量耗散式均衡,工作原理是在每节电芯上并联一个电阻,当某个电芯提前充满,而又需要继续给其他电芯充电时,通过电阻对电压高的电芯以热量形式释放电量,为其他电芯争取更多充电时间。由于被动均衡结构更为简单,所以使用比较广。但是被动均衡也有明显的缺点,由于结构简单制作成本低,采用电阻耗能产生热量,从而会使整个系统的效率降低。并且均衡时间短,效果不佳,一般均衡时间都在充电周期末期。此外,只能对高电压电池进行放电,无法对劣质电池进行改进。在适用场景上,被动均衡更适合于小容量、低串数的锂电池组应用,可以释放每颗电芯的储能能力,实现电量的有效利用。
工商业储能系统以及储能电站系统主要由电池系统、电池管理系统(BMS)、能量管理系统(EMS)、储能变流器(PCS)以及其他电气设备构成。储能电池是储能系统的关键组成部分,它储存能量以备需要时使用,不同种类的电池具有不同的特点和适用性。电池由固定数量的锂电池组成,这些锂电池在框架内串联和并联,形成一个模块。然后将模块堆叠并组合形成电池架。电池架可以串联或并联,以达到电池储能系统所需的电压和电流。电池组的设计和配置需要综合考虑能量、功率、循环寿命和成本等关键参数,以便保证其安全性、可靠性和性价比锂电池软件保护板则采用嵌入式软件实现电池管理系统的一种方式。

锂电池保护板电流选择1.锂电池保护板电流是由保护IC检测电压和MOS管内阻决定的,如果保护IC无法更改,可以改MOS管,比如DW01与8205MOS,用一颗MOS管是2~5A,用两颗MOS管并联电流就会增加一倍。现在的大容量移动电源有的用3~4颗MOS管并联。2.保护板保护电流=过流检测电压/MOS管内阻(由于是两颗MOS管串联,计算时MOS管内阻要乘2)3.锂电池选保护板要根据电池的容量来定锂电池保护板选购要点为了保护锂电池组寿命,建议任何时候电池充电电压都不要超过3.65v,就是锂电池保护板保护电压不高于3.65v,均衡电压建议3.4v-3.5v,电池放电保护电压一般2.5v以上就可以。充电器建议最高电压为3.5串数,自放电越大,均衡需要时间越长,自放电过大的电芯已经很难均衡,需要剔除。所以挑选锂电池保护板的时候,尽量挑选3.6v过压保护的,3.5v左右启动均衡的。总之锂电池保护板的内阻越低越好,越低越不发热。保护板限流大小是靠康铜丝取样电阻决定的,但持续电流能力是mos决定的锂电池保护板涉及4种芯片,即电池充电、电池电量计、电池监视芯片、电池保护芯片。硬件锂电池保护板软件开发
两轮电动车锂电池保护板行业内成为两轮电动车电池保护板分为硬件板与软件板。特种车辆锂电池保护板系统
锂电池保护板的优势包括:提高电池寿命,通过实时监测和保护电池,避免电池过充、过放等问题,锂电池保护板能够有效延长电池的使用寿命。增强安全性:锂电池保护板在预防过充、过放、短路等问题方面发挥着重要作用,有效降低了电池损坏甚至起火的风险,保障了用户的人身和财产安全。优化性能:通过平衡管理,锂电池保护板能够确保电池组内各节电池的压差不大,从而提高整个电池组的充放电性能,使电动车的动力输出更加稳定和高效。特种车辆锂电池保护板系统