近年来,轴承技术取得了快速的发展,尤其是在尺寸精度和材料清洁度方面。因此,相较于传统ISO 寿命计算公式求得的寿命,如今的轴承在清洁的环境能够拥有更长的滚动疲劳寿命。寿命得以延长,一部分原因在于诸如润滑清洁度和过滤等轴承相关技术领域取得了重大进步。传统的寿命计算公式基于 G. Lundberg 和A. Palmgren 的理论(以下简称“L-P 理论”),只涉及内部起点型剥落。 在该现象中,首先由于动态剪切应力在滚动面下方产生**初的裂纹,然后以裂纹为起点发展到表面的剥落。磁电机球轴承磁电机球轴承,这种轴承内径为 4~20 mm,属于小型轴承。NSK24040CE4C3S11轴承批发
当失效概率低于 10% 时(剩余概率≧ 90%),滚动疲劳寿命要长于韦布尔分布的理论曲线。这是基于对大量不同型号轴承进行寿命实验和数据分析得到的结论。由此考虑故障率≦ 10% 的轴承寿命时(例如,95% 寿命或 98% 寿命),则使用下表所示的可靠性系数 a1 确定寿命。假设额定疲劳寿命 L10 为10 000 小时的某一轴承,计算其可靠度为 98% 时的寿命 L2,可求得该寿命为 L2=0.33 x L10=3 300小时。通过此方法,可以将轴承寿命的可靠性与设备所要求的可靠性程度以及***检修和检查的难易程度相匹配。NSK23220CE4C3S11轴承经销商圆锥滚子轴承装有圆锥形滚动体,由内圈的大挡边引导。
工况寿命修正系数a3用于修正多个系数,尤其是润滑系数。如果内外圈之间没有倾斜,且轴承接触区域的润滑膜厚度充足时,可以设a3>1;但下列情况中,a3<1:• 滚道与滚动体之间接触区域的润滑剂粘度低• 滚动体的线速度很低• 轴承温度高• 润滑剂中混入了水分或异物• 内外圈之间倾斜过大由于仍有很多未知因素,因此,难以为具体工况确定合适的a3值。并且,轴承特性系数a2也受工况影响。所以可以将 a2和a3结合(a2×a3)作为一个数值而非**系数来处理。这时,在常规润滑和工况下,(a2×a3)应设为等于1。然而,在润滑剂粘度过低时,可将该值降至比较低0.2。
皮带或链条传动时的轴承载荷用皮带或链条传递动力时,作用于皮带轮、链轮的力可由以下公式求出:M = 9 550 000H / n....(N · mm) = 974 000H / n....{kgf · mm}} ..........(4.16)Pk = M / r ................................................. (4.17)式中, M : 作用于皮带轮或链轮的力矩 (N · mm),{kgf · mm}Pk : 皮带或链条传递的有效力 (N),{kgf}H : 传动力 (kW)n : 转速 (min-1) r : 皮带轮或链轮的有效半径 (mm)计算皮带轮轴所承受的载荷时,必须考虑皮带的张力。因此,皮带传动的情况下,作用于皮带轮轴上的实际载荷 Kb,由有效传动力乘以**皮带张力的皮带系数 fb 求得。滚动轴承简化了轴承外面的结构,便于保养、检查。
新寿命计算公式的构成(1) 内部起点型剥落滚动轴承出现内部起点型剥落的前提条件是滚动体与滚道在清洁润滑条件下通过足量和连续性油膜进行接触。图 4.6 绘制了各试验条件下的 L10 寿命,其中纵轴和横轴分别表示比较大表面接触压力 (Pmax) 和所施加重复应力的次数。在图中,L10 理论线是使用传统寿命计算公式得到的理论线。随着比较大表面接触应力下降,实际寿命线越来越偏离使用传统理论计算得到的线,且趋向寿命更长的方向。该偏离表明存在疲劳极限载荷 Pu,低于该值将不会产生滚动疲劳。图 4.7 中对此做出了更好的说明。轴承成对双联的种类,有外圈正面配合的面对面双联(DF 型)、背面配合的双联(DB 型)。杭州NSK2911轴承重量
四点接触球轴承球与内、外圈呈 35° 接触角,这种轴承可以与面对面或背对背的角接触球轴承互换。NSK24040CE4C3S11轴承批发
疲劳寿命与可靠性诸如飞机卫星火箭等设备,任何零部件故障都可能导致整机损伤且难以修复,此类场合就对各个零部件的可靠性提出了极高的要求。可靠度这一概念正逐渐在耐久消费品领域普及,并可应用于机械设备的有效预防性维修中。滚动轴承的额定疲劳寿命指一组同类轴承在相同工况下分别运行时,其中 90% 的轴承未发生材料滚动疲劳导致的损伤而持续旋转的总转数或以恒定转速旋转的总时间。此时可靠性定义为 90%。换言之,疲劳寿命通常都采用 90% 可靠性定义。另外,还有其他描述寿命的方法。例如,平均值就常被用来描述人类的寿命。然而,如果将平均寿命用在轴承上,那么,太多轴承都会在达到平均值前便失效。NSK24040CE4C3S11轴承批发