随着工业生产和科学技术的发展,人们对导电材料提出了更新、更高的要求。目前,导电高分子材料的研究主要集中在碳系导电填料填充热塑性基体类上,而石墨烯[1](GNS)作为一种新型的单原子层碳材料,因其独特的结构对改善聚合物的力学性能、电性能和热性能等具有很大的潜力。GNS的制备方法主要有:化学气相沉积法[2,3]、外延生长法[4]和氧化还原法[5]等。相比而言,氧化还原法具有成本低、产率高等特点,有望成为规模化制备GNS的有效途径之一。超高分子量聚乙烯(UHMWPE)具有极好的耐磨性,良好的耐低温冲击性和自润滑性。本文采用溶液混合、超声分散的方法制备了GNS/UHMWPE复合材料,发现GNS能均匀地分散到UHMWPE基体中;同时研究了GNS/UHMWPE复合材料的室温导电行为和阻-温特性。 玻纤增强复合材料颜色、性能可根据客户需求定制。贵州石墨烯复合材料铜
氧化石墨烯在聚合物基体中可以限制聚合物链的流动性,在燃烧过程中,各向异性氧化石墨烯形成碳层网络,阻碍降解产物的逸出。还原后石墨烯还具有较高热导率,有助于燃烧区域狙击的热量扩散,因此氧化石墨烯/聚合物复合材料可用作阻燃材料。此外,氧化石墨烯还可提高PS、聚乙烯醇、聚甲基丙烯酸甲酯、聚氨酯等聚合物的耐热性60,61。这是因为氧化石墨烯的含氧基团与聚合物的氢键配位后,使复合材料的自由离子量缩减,进而在一定程度上降低了复合材料的振动频率。研究人员通过共混法,以氧化石墨烯和混合材料树脂用作原材料,进行氧化石墨烯聚合物复合材料的制备。实验结果发现所制备的复合树脂材料与单纯的树脂相比,耐热性能有了***的提升,这无疑为耐热材料的良好应用打下了坚实稳定的基础,也推动了耐热材料的发展62。常州制备石墨烯复合材料生产企业常州第六元素拥有氧化石墨的高效纯化技术。
还原石墨烯以及改性的石墨烯已经被用在药物载体、活细胞成像、生物分子检测等生物领域[50]。相比于碳纳米管,石墨烯基材料在生物领域的应用有着明显的优势。首先,它不含金属催化剂等杂质,因此不会对细胞产生生物应激。其次,改性的石墨烯的分散不需要表面活性剂而且具有更好的水溶性。再次,石墨烯极高的比表面积能使载药量**提高。改性石墨烯同样也被用在一些生物器件上,检测生物细胞以及生物分子。它能作为界面对单个细菌进行识别,也能作为无标记,可逆DNA检测器,或是作为一种极性特定的分子晶体吸附蛋白质/DNA[123]。
聚合物太阳能电池常采用氧化铟锡(ITO)作为透明导电电极。其中ITO成本较高,机械稳定性较差,即使在很小的外界机械应力作用下ITO膜也易产生微裂纹导致膜电阻增加,从而使光电器件的性能下降。石墨烯优异的光学性能和机械强度及韧性,使其在柔性光伏器件的透明电极中具有更好应用潜力[97]。Xu等[98]将氧化石墨烯溶液旋涂成膜,然后在700 ℃下用肼蒸汽还原,所得石墨烯薄膜的薄层电阻为1.79×104 Ω/sq,电导率为22.3 S/cm,将其在有机光伏电池中(OPVs)作为透明电极,所得器件的功率转换效率为0.13%。这种方法制备得到的石墨烯薄膜不仅可以用于有机光伏电池,还可以用于其他光学器件,例如平板显示器等。Zhang等[99]对氧化石墨烯进行950 ℃热还原,再使用标准工业光刻以及O2等离子体蚀刻工艺对还原的石墨烯薄膜进行精确可控地刻蚀,制备了石墨烯网状透明电极(GME),提高了电极的透光率。氧化石墨烯分散液含有丰富的羟基、羧基和环氧基等含氧官能团。
氧化石墨烯(GO)纳米片表面存在亲水官能团,可以在水中形成稳定的悬浮液,对水泥基材料具有很高的亲和力,易于掺入水泥基材料中。目前,关于GO改性水泥复合材料的研究已经很多,国内外相关研究表明,GO对水泥基材料各项性能的影响非常***,GO的添加可以影响水泥基材料的水化过程,提升水泥基材料的力学性能和耐久性,GO还可以用于水泥基复合材料的功能相,提高水泥基材料的吸附性能、电磁屏蔽性能、导电性能等91-93,因此在水泥复合材料中具有很好的应用前景。常州第六元素拥有石墨的深度插层和高解离率的制备技术。常州制备石墨烯复合材料生产企业
常州第六元素是专业从事石墨烯研发、生产及销售的专精特新小巨人企业。贵州石墨烯复合材料铜
聚合物的结晶过程会直接影响其加工性能,氧化石墨烯加入到聚合物中可以在复合体系中起到成核剂的作用,有效地改善聚合物的结晶过程。研究人员对聚乳酸(PLLA)/氧化石墨烯纳米复合材料进行了非等温和等温过程中冷结晶行为的研究64。通过不同升温速率的差热分析发现,随着氧化石墨烯负载量的增加,聚乳酸的结晶峰温向低温范围转移,这说明聚乳酸的非等温冷结晶行为有明显改善,而且氧化石墨烯可***地提高聚乳酸的结晶速率,并使其结晶机理和晶体结构保持不变。贵州石墨烯复合材料铜