当测量交直流电流时,环形铁芯C1处于正向激磁状态,在采样电阻RS1上将产生正比于一次交直流电流的有用低频信号VL1,包括直流分量信号Vdc及工频交流信号Vfac,同时也会产生高频无用交流分量VH1。由于环形铁芯C2激磁状态与铁芯C1完全相反,因此在采样电阻RS2上可以检测到反向的低频信号VL2及反向的无用交流分量VH2。对于环形铁芯C2而言,其与环形铁芯C1反相端支路对称,而缺少正向端电路部分,因此环形铁芯C2在振荡过程中激磁电流的平均电流与一次侧交直流电流线性关系较差,低频信号VL2为无用低频信号。根据上述分析,可以得到合成信号VR12表达式如下:VR12=VR+VR=VL1+(VH1+VH2)(3-11)磁通门电流传感器还可以用于测量其他复杂的电流信号,例如在电子电路中,进行故障诊断和电路优化。广州电流传感器型号
(b)根据式(2-33)选取低磁饱和强度BS,降低铁芯C1截面面积或增大激磁绕组匝数N1,可有效降低铁芯C1激磁饱和电流阈值Ith,以便于满足假设1、3中Ith<<IC。(c)可增大激磁电压峰值Vout或降低采样电阻Rs的阻值,以提高铁芯回路稳态充电电流IC,便于满足假设1、3中Ith<<IC。(4)稳定性由式(2-34),(2-39)可知,激磁电流iex平均值与一次电流Ip之间的线性关系,且这种线性关系只是与一次绕组匝数Np及激磁绕组匝数N1有关。但是激磁电流信号较小,因此实际电路中取采样电阻RS上的电压信号作为终检测信号。采样电阻RS上一个周波内平均电压Vav满足:苏州车规级电流传感器设计标准磁通门信号淹没在强大的变压器效应感应电势之中。
IP<0 时激磁电压波形 Vex 及激磁电流波形,图中红色曲线 为 IP=0 时激磁电流波形。为方便下一节对自激振荡磁通门传感器建模,将零点选择为激磁电流达到反向充电电流 I-m 时刻,此时激磁电压恰好发生翻转。当一次电流 IP<0,即为负向直流偏置,其在铁芯 C1 中产生恒定的去磁直流磁通, 铁芯 C1 磁化曲线将向右发生平移使铁芯 C1 进入负向饱和区的阈值电流变小。 且负向饱 和阈值电流满足 I-th1=I-th-βIp,此时新的振荡过程将不同于原 IP=0 时自激振荡过程,由于 负向饱和阈值电流 I-th1 小于原负向激磁阈值电流 I-th,从而导致负半周波自激振荡过程将 不会在原时刻进入饱和区, 而是略有提前, 即铁芯 C1 工作点将提前进入负向饱和区 C; 同时,由于负向去磁直流磁通作用,铁芯 C1 进入正向饱和区需要额外的激磁电流以抵 消负向直流产生的的负向磁势, 使得铁芯 C1 进入正向饱和区的阈值电流变大,正向饱 和阈值电流满足 I+th1=I+th-βIp 。
根据自激振荡磁通门原理可知,通过在一个周波内对激磁电流 iex 积分计算平均激 磁电流, 再乘以采样电阻阻值可获取激磁电压平均值, 即可获得与一次电流相关的电压 信号。但由于式(2-23)复杂, 积分计算方法数据量庞大。同时根据分析 可知, 由于一次电流 Ip 的影响, 在不同一次电流下, 单个周期内正半周波与负半周波将会发生滞后或超前的现象, 从激磁电压周期变化观点来看, 当 Ip=0 时, 采样电压 VRs 一 个周波内正向周波时间等于负向周波时间,即 TP=TN ;当 Ip>0 时,采样电压 VRs 一个周 波内正向周波时间小于负向周波时间,即 TP<TN ;当 Ip<0 时,采样电压 VRs 一个周波正 向周波时间大于负向周波时间, 即 TP>TN;而激磁电压只有两个离散值正向峰值电压 VOH 和反向峰值电压 VOL ,且满足-VOL=VOH=Vout。因此, 通过计算激磁电压在一个周波内的 平均值, 以反向观察激磁电流在一个周波内的变化更为简单。磁通门电流传感器也可以用于测量直流电流,例如在电池充电和放电过程中,可以监测电池的电流和电量状态。
电压传感器是一种用于测量电压信号的设备,广泛应用于电力系统、工业自动化、电子设备等领域。它具有许多优势,下面我将为您详细介绍。高精度:电压传感器能够提供高精度的电压测量结果,通常具有较小的测量误差,能够满足对电压信号精确度要求较高的应用场景。宽测量范围:电压传感器能够适应不同电压范围的测量需求,可以测量低至几毫伏的微弱信号,也可以测量高达几千伏的高压信号。快速响应:电压传感器具有快速的响应速度,能够迅速捕捉到电压信号的变化,并及时输出相应的测量结果。纳吉伏研发的磁通门电流传感器具有高灵敏度、低噪声、宽频响等优点。电池电流传感器单价
通过高灵活度解决用户侧储能系统痛点。广州电流传感器型号
除了上述环节,一次绕组WP由于电磁感应效应在反馈绕组WF上将产生感应电流,该过程输入信号为一次电流IP,输出信号为反馈绕组的激磁感抗jwLF上产生的感应电压。根据上述关系及图示电流参考方向,G5传递函数可表示为:G5=ZFNP=jwLFNP=jwμ0μeN2F(2Sc)NPNFNFlcNF此外系统的负反馈信号为反馈绕组WF在合成铁芯C12中产生的反向磁势,因此在图3-2中负反馈环节传递函数直接用反馈绕组匝数NF表示。根据电流传感器比例误差ε定义及式(3-12)可得:ε=N(N)P(F)I(I)P(S)一IP=1+G(N)1G2G3G4(FG4G5一)N(1)F(3-18)将式(3-13)至(3-17)带入上式进一步化简可得:ε=ZFNP一(RM+ZF)根100%RS1NP(1)(3-19)实际电路中一次绕组通常为单匝穿心导线,因此NP=1。广州电流传感器型号