频综相关图片
  • 合肥多通道相参频综敏捷,频综
  • 合肥多通道相参频综敏捷,频综
  • 合肥多通道相参频综敏捷,频综
频综基本参数
  • 品牌
  • Anapico
  • 型号
  • APMSYN22/APSYN140/APSYN140-X/
  • 测量范围
  • 9kHz至43.5GHz
  • 分辨率
  • 0.00001Hz
  • 用途
  • 量子计算;用户系统集成或自定义信号源基础;理想的ADC/DA
  • 加工定制
  • 重量
  • 0.45~10
  • 产地
  • 瑞士
  • 厂家
  • AnaPico
频综企业商机

PDROxxxx系列极低相位噪声锁相介质振荡器输出比较高频率可达32GHz,可灵活的参考输入频率选择,具有极低相位噪声、低杂散、低功耗。PDROxxxx系列另一个重要特点在于它拥有内参考输入和外参考输入两种型号,这种紧灵活凑的设计可以更好的根据用户实际应用需求集成到各种高性能的微波组件、无线接收机、数字采集等系统中。外形尺寸mm:57.2×57.2×15.7(内参考型号35.7);功耗(V/mA):≤+12/300(输出功率为≥10dBm);参考信号输入功率(dBm),+3~+10频综的工作原理是什么?合肥多通道相参频综敏捷

毫米波频率综合实验工作已取得很大进展,但仍有许多问题需要深入研究和解决。目前已经存在的毫米波水综合工作频率不高。主要受模拟和数字分配器等部分模拟和数字部件工作频率的影响。半导体材料及工艺是其中的重要因素要想提高数字电路的工作频率,就必须克服影响数字电路工作频率的短信道效应。为此,半导体材料和加工技术需要突破。理想的半导体材料应具有更高的电子饱和速度,可应用于高功率、高速、高温条件,并与目前使用的技术兼容。使用2介质谐振器可以有效地增加MMIC电路的Q值。但是,和水晶阵一样,目前的工艺不能直接集成到芯片中,导致电路大小变大。杭州高性能频综用途APSYN420宽带频综输出频率为10MHz~20GHz。

根据调谐振荡器的调谐特性,使用频率预置信号将振荡器调谐到扫频起始频率,然后扫频发生器根据调谐灵敏度产生与扫频对应的零启动斜坡扫频信号叠加在振荡器的驱动电路中,可实现所需的微波模拟扫频输出。但由于老化、温漂、非线性、重复性、电磁干扰等原因,可能会出现各种频率误差,包括扫频起始频率预置误差不准确,无法保证扫频结束于预期的结束频率准确。扫描宽度误差和各种非线性因素导致扫描过程中速度不均匀的扫描速度误差。这些误差可以通过频率合成来消除或减少,频率合成是合成频率扫描信号的来源。

GSM移动通信系统单一载频信号的射频占有带宽只为200kHz,射频载波工作频段在900MHz。在这样高的射频工作频率上,要实现200kHz这样窄的带通滤波器,使用常用的微波腔体滤波器已经变得十分困难或是不可能了。所以在GSM移动通信系统单一载频道中继直放站设备中,将接收到的基站射频信号下变频为中频,然后利用中频声表面波滤波器实现200kHz窄带带通滤波。中频声表面波的选择性能够做得很好。在这种类型的中继直放站中,使用了上、下变频器和频率综合器,它可能引入一定的频率误差。为了减小频率综合器频率误差,要求频率综合器的频率稳定度高达1×10-7,而且对频率源的瞬时频率稳定性也有较高的要求。AnaPico频综具有大带宽的功能。

当4台APMSYN22宽带敏捷型频综设备级联组成一个四通道输出的相参源系统时,无需从外部额外引入共参考,APMSYN22标准提供了准确度高达±30ppb的1GHz高频高稳定度的参考时钟输出(1GHz高频参考同步信号对于长时间稳定输出相位相干信号至关重要!)。此时的同步时钟只需在主设备上设置产生,从设备只需设置为1GHz的外参考输入,所有的从设备1GHz外参考输入实际上都是由主设备输出的,并经由一个从设备内部功分及放大传递至下一个从设备,如此循环可实现非常多通道输出的相参系统!多通道APSYN140-X系列相参频率合成器可应用于用户系统集成或自定义信号源基础。江苏多通道相参频综用途

APMSYN22 是一款紧凑型宽带频率合成器,用于生成 CW 和脉冲形式的准确和稳定的信号。合肥多通道相参频综敏捷

SWFS系列超宽带低相噪小型频率源模块是采用锁相环技术并结合盛铂科技多年在设计开发宽带微波测试测量产品中积累的丰富经验为广大用户单独研发的通用小型频率源模块,它具有宽输出频带、快速跳频以及极低相位噪声等特点,该频率源还具有体积小、功耗低、控制方便等优点。 SWFS系列目前共有4个覆盖不同频率范围的型号,并可根据客户的特殊需求进行定制(如:输出频段、步进、点频输出等),工作频率范围:6~8GHz, 跳频时间:小40μs,可应用于测试测量、仪器仪表、RF/微波电路等。


合肥多通道相参频综敏捷

与频综相关的文章
与频综相关的**
产品中心 更多+
信息来源于互联网 本站不为信息真实性负责