双机械端口磁通切换永磁无刷电机及其多模式驱动控制研究[D];江苏大学;2017年中国硕士学位论文全文数据库条1王冰冰;基于软磁复合材料的电动车用永磁无刷电机研究[D];山东大学;2018年2崔波;SMC-Si钢组合铁心盘式横向磁通永磁无刷电机及其驱动控制研究[D];山东大学;2018年3刘跃斌;新型磁极结构的永磁无刷电机解析法建模与磁场分析[D];合肥工业大学;2018年4许晓伟;基于PLC的无刷电机定子生产线控制系统研究[D];合肥工业大学;2018年5王霄;基于矢量控制的永磁无刷电机控制器的设计与实现[D];电子科技大学;2018年6杨飞;旋转导向钻井中导向控制电机的驱动系统研究[D];西安石油大学;2018年7杨荣金;基于无刷电机的空气净化器风机控制系统设计[D];安徽理工大学;2018年8杨深;磁场增强型永磁无刷电机的设计与分析[D];江苏大学;2017年9薛劭申;高速永磁无刷电机设计与控制系统研究[D];北京交通大学;2011年10杨迪;无刷电机研发项目的风险识别与评价[D];上海交通大学。通过自动化生产线,可以实现定子生产的高度标准化和规模化。淮南新能源电机定子生产线销售厂家

一体化中药粉碎机虚拟装配技术[J];南京理工大学学报;2011年06期8陈远龙;崔玮;何其昌;;基于DELMIA的支重轮装配工艺评估与优化方法[J];工程机械;2011年12期9施英莹;刘志峰;张洪潮;胡迪;;基于蟑螂算法的产品拆卸序列规划[J];合肥工业大学学报(自然科学版);2011年11期10王伟;杨润党;;基于DELMIA的船舶建造流程仿真[J];造船技术;2011年02期中国硕士学位论文全文数据库条1董诗绘;基于ROBCAD工业机器人规划路径仿真的实现[D];内蒙古大学;2014年2张兆智;基于UMAC串并混联汽车喷涂机器人控制系统研究[D];电子科技大学;2014年3付郁;S公司发动机总装线生产系统建模及改善研究[D];沈阳工业大学;2014年4张明;白酒包装自动码垛机器人的研制[D];四川理工学院;2013年5陈维余;DYC公司总装生产线平衡问题研究[D];山东大学;2012年6王崇果;M公司服务器产品生产线平衡改善研究[D];华南理工大学;2012年7陈军;多自由度机械臂实时仿真系统研究[D];哈尔滨工程大学;2012年8钟文;不锈钢锅冲压成形自动上下料系统开发[D];广东工业大学;2011年9王丽芳;基于工业工程的空气过滤器装配线改进研究[D];山西大学;2011年10陈森源;起重机底盘装配线线平衡研究[D];吉林大学。江西半自动电机定子生产线设备厂家生产线的自动化程度能够提高生产效率和产能,降低了生产成本。

[0039]绕线机的主要工作参数为:[0040]1、主轴转绕角度:30°、60°(改变齿轮传动比);[0041]2、绕线模具工位:单工位,多线嘴同时绕线;[0042]3、主轴转速:300转/分钟;[0043]4、电源:AC三相380V±10%50Hz;[0044]5、额定功率2kVA;[0045]6、气源:5?7kgf/cm2(?);[0046]7、生产节拍:约120秒/件。【附图】【附图说明】[0047]图1为本实用新型的绕线机的立体结构示意图;[0048]图2为图1从另一个方向观察的绕线机的立体结构示意图;[0049]图3为从图1中绕线机的排线机构和绕线模具以及驱动机构与机架的装配结构图;[0050]图4为从图3另一个方向观察的绕线机的立体结构示意图;[0051]图5为排线机构的示意图;[0052]图6为沿图4中A—A线的剖面图;[0053]图7为绕绕模具与排线机构连接的立体结构示意图;[0054]图8为图7的图;[0055]图9为图8中绕线头的立体结构示意图;[0056]图10为图8中的推头的立体结构示意图;[0057]图11为图8中的拨叉的立体结构示意图;[0058]图12为图8中盖的立体结构示意图;[0059]图13为图12中盖的另一个方向的立体结构示意图;[0060]图14为汇线板的立体结构示意图;[0061]图15为图8中的线嘴机构的立体结构示意图;[0062]图16为三个线嘴机构叠加的立体结构示意图。
[0085]20为排线机构、21为外管、210为多边形体、22为内管、220为多边形体、221为连接螺纹;[0086]30为绕线模具、31为绕线头、310为通孔、311为安装槽、32为拨叉机构、320为推头、321为拨叉、322为环形槽、323为凸起、324为铰接块、325为连接部、326为第二连接部、33为盖、330为槽、331为台阶、332为孔、333为凹槽、334为汇线板、335为通孔、34为线嘴机构、340为滑块、341为线嘴、342为连接块、343为凹槽、345为跨接块、346为第二连接块;[0087]40为驱动机构、41为电机、42为主轴、420为凹槽、421为滑槽、43为驱动臂、44为滑块机构、440为导杆、441为滑块本体、442为安装孔、443为通孔、444为轴承、445为内管连接座、45为支撑座、46为传动机构、460为带轮、461为皮带、462为传动齿轮箱、463为齿轮、464为过桥齿轮、465为第二齿轮、47为第二传动机构、470为第二电机、471为伞齿轮、472为第二伞齿轮、48为偏心调整机构、480为连接座、481为丝杆安装座、482为行程调节丝杆、483为滑块、484为螺纹。通过自动化生产线,可以实现生产过程的高度可控性和可追溯性。

基于精益生产的“一个流”和生产线平衡的研究[J];企业技术开发;2009年08期中国硕士学位论文全文数据库条1马捷;基于ROBCAD的涂装生产线3D建模及喷涂关键技术研究[D];江苏大学;2016年2林秀木;汽车发动机生产线平衡优化研究[D];沈阳工业大学;2016年3赵云飞;基于遗传算法的生产线平衡改善研究[D];南昌大学;2014年4董诗绘;基于ROBCAD工业机器人规划路径仿真的实现[D];内蒙古大学;2014年5李大朋;定子铁芯自动化生产线的设计[D];长春理工大学;2014年6杭治雨;基于生产线平衡的精益自动化生产改善[D];华东理工大学;2014年7王晓磊;基于PLC的自动包装码垛生产线控制系统设计[D];西安工程大学;2013年8林仕高;搬运机器人笛卡尔空间轨迹规划研究[D];华南理工大学;2013年9李潋;基于PLC的挡纱板自动装配线系统的研究[D];华中科技大学;2013年10陈维余;DYC公司总装生产线平衡问题研究[D];山东大学;2012年【共引文献】中国期刊全文数据库条1李林杰;刘鸿印;王广欣;谭宗宝;;基于DELMIA的铁路货车组装生产过程仿真与研究[J];机械;2015年12期2王建波;王林春;龙罡;罗佳;彭宁涛;简金权;;三维数字化技术在工业厂房设计中的应用[J];工程建设与设计;2015年12期3沈重;郑宏涛;董伟;陈永强;何朔;。生产线的自动化程度能够减少人为错误和失误,提高了产品的质量和可靠性。江西半自动电机定子生产线设备厂家
定子生产线在提高企业竞争力方面有重要作用,能够提供高质量的产品和服务,树立企业的品牌形象和市场地位。淮南新能源电机定子生产线销售厂家
由连杆3-2使曲柄3-1的旋转运动转变为连接头12的直线运动,连接头12通过推力轴承13利用主轴9上的轴肩9-2带动主轴9作轴向移动。主轴9在上安装座14的导向孔、下安装座15的导向孔、衬套16和从动锥齿轮4-5的轴孔中上下移动,带动绕线轴11、绕线嘴固定架18—起上下移动。在动力轴6旋转的同时,动力轴6带动凸轮2-1旋转,凸轮2-1通过摆动架2-2带动传动长轴8正反旋转,传动长轴8通过同步轮、锥齿轮副带动主轴9正反转动。[0005]虽然,上述绕线机可以实现绕制工作,相对传统的绕制技术而言,自动化程度有所提升,但是由于绕线嘴的结构非常单一,主轴9每次的升降只能实现在一个骨架上绕制漆包线,存在绕制效率低的缺陷。另外,在当前骨架上绕制好漆包线后,由于漆包线不能斩断,需要连续地被转换到下一个骨架上继续绕制,明显地,上述绕线机只能通过人工操作的方式将漆包线进行移动,而无法实现自动化的操作方式。【发明内容】[0006]本实用新型的目的在于提供一种能够进入到定子铁芯轴孔中,以对定子铁芯的骨架绕制漆包线的电机定子铁芯绕线机。[0007]解决上述技术问题的技术方案如下:[0008]电机定子铁芯绕线机,包括:[0009]机架。淮南新能源电机定子生产线销售厂家