4、保护芯片过放保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当电池放电到2.5 v时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。 5、过流保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当负载突然减小,IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。 6、短路保护:在P+与P-上接上空负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路); IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。XySemi 锂电保护板生产操作注意事项2。XB6061J2S电源管理ICLED线性驱动芯片手电筒驱动
XA2320 XA3200 XA2320B XA2320C 电荷泵是通过时钟信号、电容器和开关(FET或二极管)使电压升压或反转的电路。 电荷泵具有以下特点。优点由电容器、开关(二极管)构成,节省空间无需线圈辐射噪声小可升压/负电压 缺点不能输出大电流由于利用电容器充放电,所以脉动电压大想要低价制作高电压和负电压时,经常使用时钟信号(DC/DC的开关节点等)和二极管的二极管电荷泵。在此,介绍使用二极管电荷泵的反转电源制作方法的原理和实例。电荷泵是通过时钟信号、电容器和开关(FET或二极管)使电压升压或反转的电路。 电荷泵具有以下特点。优点由电容器、开关(二极管)构成,节省空间无需线圈辐射噪声小可升压/负电压 缺点不能输出大电流由于利用电容器充放电,所以脉动电压大想要低价制作高电压和负电压时,经常使用时钟信号(DC/DC的开关节点等)和二极管的二极管电荷泵。在此,介绍使用二极管电荷泵的反转电源制作方法的原理和实例。XC3106AN电源管理IC磷酸铁锂充电管理太阳能充电管理方案芯片。
锂电池PACK设计过程中锂电池保护IC是保护芯片的,首先取样电池电压,然后通过判断发出各种指令。MOS管:它主要起开关作用 2、保护芯片正常工作:保护芯片上MOS管刚开始可能处于关断状态,电池接上保护芯片后,必须先触发MOS管,P+与P-端才有输出电压,触发常用方法——用一导线把B-与P-短接。 3、保护芯片过充保护:在P+与P-上接上一高于电池电压的电源,电源的正极接B+、电源的负极接B-,接好电源后,电池开始充电,电流方向如图所示的I1的流向电流从电源正极出发,流经电池、D1、MOS2到电源负极(这时MOS1被D1短路),IC通过电容来取样电池电压的值,当电池电压达到4.25v时,IC发出指令,使引脚CO为低电平,这时电流从电源正极出发,流经电池、D1、到达MOS2时由于MOS2的栅极与CO相连也为低电平,MOS2关断,整个回路被关断,电路起到保护作用。
CN3125是具有恒流∕恒压功能的充电芯片,输入电压范围2.7V到6V,能够对单节或双节超级电容进行充电管理。CN3125内部有功率晶体管,不需要外部阻流二极管和电流检测电阻。CN3125只需要极少的外部元器件,非常适合于便携式应用的领域。 热调制电路可以在器件的功耗比较大或者环境温度比较高的时候将芯片温度控制在安全范围内。 恒压充电电压由FB管脚的分压电阻设置,恒流充电电流由ISET管脚的电阻设置。CN3125内部有电容电压自动均衡电路,可以防止充电过程中电容过压。当输入电压掉电时,CN3125自动进入低功耗的睡眠模式,此时TOP管脚和MID管脚的电流消耗小于3微安。 其他功能包括芯片使能输入端,电源低电压检测和超级电容准备好状态输出等。 CN3125采用散热增强型的8管脚小外形封装(eSOP8)。适用范围:适用于标称电压3.7V,充满电压4.2V的锂电池。2组电池的容量/内阻越接近越好!
解决方案概要 标称电压2.2~2.4V的锂二次电池和全固态电池具有以下特点,也适合于工业设备的备份用途、可穿戴设备及Smartcard等。 可使用LDO进行恒压充电可能。(无需的高价CV/CC充电IC) 耐过放电,可用于简单的放电检测 因为是电池,所以能长时间维持恒定电压 比起电压直线下降的Supercap,能更简单、有效地提取能量 也有70℃、105℃等高温对应产品 也有回流对应 / 热层压加工对应品 关于充电用LDO 因二次电池的大容量成为负载,所以低消耗稳压器适合于LDO。 充电时 可在充电状态下使用。 充电后,电池电压短期内上升到LDO的输出电压之后,会逐渐充电。 无需满充电检测,在满充电后,一般无需关闭稳压器。 使用时 可在充电状态下使用。 VIN没有电压时,为了不白白消耗储存在二次电池中的能量,需要防止回流到VIN及使LDO处于待机状态。 在本电路框中,在用SBD防止回流的同时,通过连接到SBD阳极侧的下拉电阻,成为LDO的CE=“L”,稳压器将处于待机状态。 由此,可从二次电池将消耗电流抑制为稳压器VOUT引脚的微小电流。(称为“VOUT SINK电流”)在输入端的NTC热敏电阻,是靠充电器的输入电流来加热,降低电阻。XB7608AF电源管理ICLED线性驱动芯片手电筒驱动
高压降压电源芯片用于便携式设备、移动设备、车载设备的电源变换。XB6061J2S电源管理ICLED线性驱动芯片手电筒驱动
Xysemi设计团队成员都有多年美国模拟电路设计公司的工作经验,曾设计出多款电源管理类产品。 “电池保护系列产品”是Xysemi的产品系列,产品涵盖从几毫安时的小容量电池到几万毫安时的超大容量电池.该系列产品在性能参数,方案面积上与传统方案相比具有颠覆性的优势,本公司在“电池保护系列”产品上拥有大量的国内和国际专利。 Xysemi现有的主导产品系列包括“电池保护系列产品”,“SOC系列产品”,DC-DC 降压系列,DC-DC 升压系列 以及屏背光系列等.XB6061J2S电源管理ICLED线性驱动芯片手电筒驱动
深圳市芯纳科技技术有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的电子元器件中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来深圳市芯纳科技技术供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!
磷酸铁锂电池的充放电反应是在LiFePO4和FePO4两相之间进行。在充电过程中,LiFePO4逐渐脱离出锂离子形成FePO4,在放电过程中,锂离子嵌入FePO4形成LiFePO4。电池充电时,锂离子从磷酸铁锂晶体迁移到晶体表面,在电场力的作用下,进入电解液,然后穿过隔膜,再经电解液迁移到石墨晶体的表面,而后嵌入石墨晶格中。与此同时,电子经导电体流向正极的铝箔集电极,经极耳、电池正极柱、外电路、负极极柱、负极极耳流向电池负极的铜箔集流体,再经导电体流到石墨负极,使负极的电荷达至平衡。锂离子从磷酸铁锂脱嵌后,磷酸铁锂转化成磷酸铁。电池放电时,锂离子从石墨晶体中脱嵌出来,进入电解液,然后穿过...