在GO还原成RGO的过程中,材料的导电性、禁带特性和折射率都会发生连续变化,形成独特而优异的可调谐型新材料。2014年,澳大利亚微光子学中心贾宝华教授领导的科研小组***发现在用激光直写氧化石墨烯薄膜形成微纳米结构的过程中,材料的非线性可以实现激光功率可控的动态调谐。与传统的非线性材料相比,氧化石墨烯的三阶非线性高出了整整1000倍,随着氧化石墨烯中的氧成分逐渐减少,而非线性也呈现出被动态调谐的丰富变化。不但材料的非线性系数的大小产生改变,其非线性吸收和折射率也发生变化,并且,这种丰富的非线性特性完全可以实现动态操控。在用氧化还原法将石墨剥离为石墨烯的工业化生产过程中,得到的石墨烯微片富含多种含氧官能团。关于氧化石墨制造
多层氧化石墨烯(GO)膜在不同pH水平下去除水中有机物质的系统性能评价和机理研究。该研究采用逐层组装法制备了PAH/GO双层膜,对典型单价离子(Na+,Cl-)和多价离子(SO42-,Mg2+)以及有机染料(亚甲蓝MB,罗丹明R-WT)和药物和个人护理品(三氯生TCS,三氯二苯脲TCC)在反渗透膜系统中通过GO膜的行为进行研究。结果发现,在pH=7时,无论其电荷、尺寸或疏水性质如何,GO膜能够高效去除多价阳离子/阴离子和有机物,但对于单价离子的去除率较低。传统的纳滤膜通常带负电,且只能去除带有负电荷的多价离子和有机物。随着pH的变化,GO膜的关键性质(例如电荷,层间距)发生***变化,导致不同的pH依赖性界面现象和分离机制,一些有机物(例如三氯二苯脲)的分子形状由于这种有机物与GO膜的碳表面的迁移性和π-π相互作用而极大地影响了它们的去除。鸡西绿色氧化石墨氧化石墨是由牛津大学的化学家本杰明·C·布罗迪在1859年用氯酸钾和浓硝酸混合溶液处理石墨的方法制得。
解决GO在不同介质中的解理和分散等问题是实现GO广泛应用的重要前提。此外,不同的应用体系往往要不同的功能体现和界面结合等特征,故而要经常对GO表面进行修饰改性。GO本身含有丰富的含氧官能团,也可在GO表面引入其他功能基团,或者利用GO之间和GO与其它物质间的共价键或非共价键作用进行化学反应接枝其他官能团。由于GO结构的不确定性,以上均属于一大类复杂的GO化学,导致采用化学方式对GO进行修饰与改性机理复杂化,很难得到结构单一的产品。尽管面临诸多难以解释清楚的问题,但是对GO复合材料优异性能的期望使得非常必要总结对GO进行修饰改性的常用方法和技术,同时也是氧化石墨烯相关材料应用能否实现稳定、可控规模化应用的关键。
工业化和城市化导致天然地表水体中的有毒化学品排放,其中包括酚类、油污、***、农药和腐植酸等有机物,这些污染物在制药,石化,染料,农药等行业的废水中***检测到。许多研究集中在从水溶液中有效去除这些有毒污染物,如光催化,吸附和电解54-57。在这些方法中,由于吸附技术低成本,高效率和易于操作,远远优于其他技术。与传统的膜材料不同,GO作为碳质材料与有机分子的相互作用机理差异很大。新的界面作用可在GO膜内引入独特的传输机制,导致更有效地从水中去除有机污染物。石墨烯和GO对有机物的吸附机理的研究表明,疏水作用、π-π键交互作用、氢键、共价键和静电相互作用会影响石墨烯和GO对有机物的吸附能力。关于GO与水泥基复合材料的作用机制,研究者也有不同的观点,目前仍没有定论。
目前医学界面临的一个棘手的难题是对大面积骨组织缺损的修复。其中,干细胞***可能是一种很有前途的解决方案,但是在干细胞的移植过程中,需要可促进和增强细胞成活、附着、迁移和分化并有着良好生物相容性的支架材料。研究已表明氧化石墨烯(GO)具有良好的生物相容性及较低的细胞毒性,可促进成纤维细胞、成骨细胞和间充质干细胞(mesenchymal stem cells,MSC)的增殖和分化[82],同时GO还可以促进多种干细胞的附着和生长,增强其成骨分化的能力[83-84]。因此受到骨组织再生领域及相关领域研究人员的关注,成为组织工程研究中一种很有潜力的支架材料。GO不仅可以单独作为干细胞的载体材料,还可以加入到现有的支架材料中,GO不仅可以加强支架材料的生物活性,同时还可以改善支架材料的空隙结构和机械性能,包括抗压强度和抗曲强度。GO表面积及粗糙度较大,适合MSC的附着和增殖,从而可促进间充质干细胞的成骨分化,而这种作用程度与支架中加入GO的比例成正比。通过调控氧化石墨烯的结构,降低氧化程度,降低难分解的芳香族官能团。深圳合成氧化石墨
当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯。关于氧化石墨制造
还原氧化石墨烯(RGO)在边缘处和面内缺陷处具有丰富的分子结合位点,使其成为一种很有希望的电化学传感器材料。结合原位还原技术,有很多研究使用诸如喷涂、旋涂等基于溶液的技术手段,利用氧化石墨烯(GO)在不同基底上制造出具备石墨烯相关性质的器件,以期在一些场合替代CVD制备的石墨烯。结构决定性质。氧化石墨烯(GO)的能级结构由sp3杂化和sp2杂化的相对比例决定[6],调节含氧基团相对含量可以实现氧化石墨烯(GO)从绝缘体到半导体再到半金属性质的转换关于氧化石墨制造