企业商机
AOI基本参数
  • 品牌
  • 爱为视
  • 型号
  • D11
AOI企业商机

本系统采用的卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网(FeedforwardNeuralNetworks),是深度学习(deeplearning)的表示算法之一。卷积神经网络仿造生物的视知觉(visualperception)机制构建,可以进行监督学习和非监督学习。作为图像识别领域的算法之一,卷积神经网络在学习数据充足时有稳定的表现。针对本系统所处理的大规模图像分类问题,卷积神经网络将用于提取图像的判别特征,再通过分类器进行学习和识别。画面显示:1、主图画面都有显示器件框,便于观察器件是否被识别;2、根据底板颜色可以自由选择器件框颜色;3、可依据客户需求,自由定义器件中文名;4、不良器件图静态显示;程序制作灵活性:1、无需设置参数;2、在线抓拍首件板系统辅助做程序,且支持持续补充学习,学习后自动建模比例更高(80%+);---自动框图器件种类多(60+),比例高。3、支持中文、英文、中英文混合输入;4、批量复制、粘贴、剪切、删除等支持快捷键操作。---硬件条件和安装尺寸不发生变化。 要选择一台适合自己AOI产品,我们首先要先了解AOI的基本架构和组成。深圳自动AOI原理

深圳自动AOI原理,AOI

关于元件长度公差,不同的组件供应商、电路板和无铅焊料的供应商都不可能没有任何直接的影响。优良的AOI程序应该能够应付这些这影响。如果这些个别点的变化可以保持不变,那么就能够相当大地简化AOI编程。经研究得到的结论是,由于无铅产生的影响,图形对照系统无法得到适合的检查结果,这是因为合格的样品变化太大。更加可行的方法是,取出确定每道工艺和元件变化的特性。这些变化可以分成不同的等级。如果在现在使用的工艺中,出现了一个新的变化,就要增加一个级别,来保证检查的精确性。所有认识到的和已知的缺陷都储存起来,他们的类型和图片可以用于AOI系统和全球数据库里的检查程序。我们没有必要把一块不同缺陷的电路板保存起来用于详细的检查。上海自动AOI检测仪一般都将离线AOI检测设备设置在生产线的中段,在这个位置,设备可以产生的过程控制信息。

深圳自动AOI原理,AOI

基本的AOI技术包含下列子系统:高速高精度XY方向的运动控制系统;机械光学系统;高精度高可靠性图像采集系统;智能图像识别与错误检测系统。这些子系统构成了一个与多维测量和错误检测密切相关的设备。注意到AOI识别是机器视觉在印刷电路板领域的具体应用,换言之,印刷电路板的缺陷检测实质上是属于模式识别的范畴。它将PCB上的不同缺陷视为不同的模式类,从采集到的图像信号中提取和选择特征,根据特征向量构造判别函数,进行缺陷分类,即模式识别。识别算法的好坏直接影响到智能图像识别系统的性能,进而影响整个AOI系统的性能。从机器视觉的发展来看,目前在AOI上面至少可以完整地应用以下的视觉识别算法。

运用高速高精度视觉处理技术自动检测PCB板上各种不同帖装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。自动光学检查(AOI为工业自动化有效的检测方法,使用机器视觉做为检测标准技术,大量应用于LCD/TFT、晶体管与PCB工业制程上,在民生用途则可延伸至保全系统。自动光学检查是工业制程中常见的代表性手法,利用光学方式取得成品的表面状态,以影像处理来检出异物或图案异常等瑕疵,因为是非接触式检查,所以可在中间工程检查半成品。AOI是较近才兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。以SMT检测为例,当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。取而代之的是自动检测技术,其在生产中承担着重要的角色。对于装配过程中错误的前期查找、消除起关键作用。

深圳自动AOI原理,AOI

当前电子产品日渐向着小型化趋势发展,对产品元器件的微型化要求也越来越高,微型器件的组装和检测难以只通过人工完成,由此产生越来越多的自动检测设备需求。与此同时,自动检测设备还能够健身制造成本、提升产品质量,AOI检测设备代替人工的进程发展较快。在此背景下,中国自动光学检测行业逐步发展起来。从AOI检测设备来看,目前AOI检测设备是SMT加工厂必备的设备,平均一条SMT生产线至少需要2-3台AOI检测设备,但我国AOI检测设备的渗透率较低,只为50%左右。 目前常用的图像识别算法为灰度相关算法,通过计算归一化的相关来量化检测图像和标准图像之间的相似程度。3dAOI检测设备

现市面上的AOI的制程分调试型和学习型两种。深圳自动AOI原理

AOI图像采集的一个关键步骤是控制系统,光电传感器的FOV(视窗)有限,物体高速运动中准确地抓拍到清晰的图像,软硬件协调动作非常重要,如下图所示,当图像传感器与机台移动速度不匹配时造成图像的拉伸,收缩等变形,所以,载物移动平台XY方向移动与图像采集光电传感器的同步移动影响到数据的准确,要在固定光照,等间距下拍摄一幅清晰的图像,高精度的导轨,电机和运动控制程序是非常必要的。在AOI检测中,噪声是造成图像退化的因素之一,起因是AOI图像获取,传输过程中,外界杂散光,光电二极管电子噪声及温度,光源的不稳定不均匀,机械系统的抖动,传感器温度等原因导致,不可避免的使得图像因含有噪音而变得模糊。给图像识别,图像切割等后续处理工作带来了困难。因此,为了获得真实的图像信息,除去噪声的滤波处理必不可少。 深圳自动AOI原理

深圳爱为视智能科技有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在广东省等地区的机械及行业设备中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来深圳爱为视智能科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!

AOI产品展示
  • 深圳自动AOI原理,AOI
  • 深圳自动AOI原理,AOI
  • 深圳自动AOI原理,AOI
与AOI相关的文章
相关专题
与AOI相关的**
信息来源于互联网 本站不为信息真实性负责