AOI检测基本原理与设备构成:AOI检测原理是采用摄像技术将被检测物体的反射光强以定量化的灰阶值输出,通过与标准图像的灰阶值进行比较,分析判定缺陷并进行分类的过程。与人工检查做一个形象的比喻,AOI采用的普通LED或特殊光源相当于人工检查时的自然光,AOI采用的光学传感器和光学透镜相当于人眼,AOI的图像处理与分析系统就相当于人脑,即“看”与“判”两个环节。因此,AOI检测的工作逻辑可以简单地分为图像采集阶段(光学扫描和数据收集),数据处理阶段(数据分类与转换),图像分析段(特征提取与模板比对)和缺陷报告阶段四个阶段(缺陷大小类型分类等)。为了支持和实现AOI检测的上述四个功能,AOI设备的硬件系统也就包括工作平台,成像系统,图像处理系统和电气系统四个部分,是一个集成了机械,自动化,光学和软件等多学科的自动化设备。 软件辅助建模:极速建模,一键智能搜索80多种器件。上海新一代AOI
AOI检测主要应用领域包括PCB、半导体和FPD面板。因AOI检测主要应用于PCB、半导体及FPD等电子元器件生产过程中的检测环节,几乎每一个电子元器件都需要进行瑕疵检测,因此这些电子元器件的产量与AOI检测的应用结构息息相关。因此,AOI检测行业应用需求结构主要通过PCB、半导体和FPD的产量比例来进行测算得到。从AOI检测设备应用需求分布情况来看,根据Yole调研数据显示,2019年全球AOI检测设备应用较多的是PCB行业,占到总体市场的69%。 浙江智能AOI检测设备AOI系统集成技术会牵涉到关键器件、系统设计、整机集成、软件开发等内容。
AOI检测原理是采用摄像技术将被检测物体的反射光强以定量化的灰阶值输出,通过与标准图像的灰阶值进行比较,分析判定缺陷并进行分类的过程。与人工检查做一个形象的比喻,AOI采用的普通LED或特殊光源相当于人工检查时的自然光,AOI采用的光学传感器和光学透镜相当于人眼,AOI的图像处理与分析系统就相当于人脑,即“看”与“判”两个环节。因此,AOI检测的工作逻辑可以简单地分为图像采集阶段(光学扫描和数据收集),数据处理阶段(数据分类与转换),图像分析段(特征提取与模板比对)和缺陷报告阶段四个阶段(缺陷大小类型分类等)。为了支持和实现AOI检测的上述四个功能,AOI设备的硬件系统也就包括工作平台,成像系统,图像处理系统和电气系统四个部分,是一个集成了机械,自动化,光学和软件等多学科的自动化设备。
AOI技术实现要素:本发明所要解决的技术问题是提供一种AOI检测方法,其可降低现场操作人员误判的几率,提高产品质量。为达上述目的,一种AOI检测方法,其通过一AOI检测设备执行,用于检测待测PCBA板卡,其包括以下步骤:a.启动一AOI检测程序,对该待测PCBA板卡上的元件进行检测获得一检测数据,;b.判断该检测数据是否超过一预先设置的阈值,如果是则执行步骤c,如果否则执行步骤f;c.判断该待测PCBA板卡的检测数据是否大于一预先设置的第二阈值,如果是则执行步骤d,如果否则执行步骤e;d.判定该待测PCBA板卡为不合格产品并存储该待测PCBA板卡的检测结果;e.根据现场操作人员的输入信息,储存该待测PCBA板卡的检测结果;以及f.判定该待测PCBA板卡为合格产品并存储该待测PCBA板卡的检测结果。 以目前AOI(自动光学检测)技术在PCB行业渗透率较高,复杂化趋势以及制造行业整体对智能化变革的需求。
AOI的光线照射有白光和彩色光两类设备,白光是用256层次的灰度,彩色是用红光,绿光,蓝光,光线照射至焊锡/元器件的表面,之后光线反射到镜头中,产生二维图像的三维显示,来反映焊点/元器件的高度和色差。人看到和认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI与人判断的原理相同。AOI从镜头数量来说有单镜头和多镜头,这只是技术方案实现的一种选择,很难说那种方式就一定好,因为单镜头通过多个光源的不同角度照射也能得到很好的检测图像。特别是针对无铅焊接的表面比较粗糙,会产生形状不同的焊点,容易形成气泡,并且容易出现零件一端翘立的特点,新的AOI设备也都进行了适应性的硬件和算法的更新。 AOI检测仪A系统多采用黑白相机成像,提高成像分辨能力,还要考虑图像运动过程拍摄图片模糊带来的不利影响。江西新一代AOI
插件炉前检测可以利用数据库实时保存检测的状态和结果,帮助、分析产品出错和误检原因。上海新一代AOI
AOI技术向智能化方向发展是SMT发展带来的必然要求。在SMT的微型化、高密度化、快速组装化、品种多样化发展特征下,检测信息量大而复杂,无论是在检测反馈实时性方面,还是在分析、诊断的正确性方面,依赖人工对AOI获取的质量信息进行分析、诊断几乎已经不可能,代替人工进行自动分析、诊断的智能AOI技术成为发展的必然。对各种缺陷的特征提取和缺陷识别与分类进行研究;针对高密度PCB视觉检测系统中要检测的缺陷细小,缺陷的种类繁多,特征不易确定等问题,对于各种不同缺陷的特征提取技术和各种分类方式进行研究,采用机器学习的方法,设计不同的分类器,并对不同分类器的分类效果和误差进行比较和分析,采用优化的分类器可以实现对缺陷的快速检出和准确分类,并尽可能地提高分类器的智能化水平。上海新一代AOI
深圳爱为视智能科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的机械及行业设备行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳爱为视智能科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!