1.一种基于机器视觉的漆面瑕疵检查系统,其特征在于:包括plc模块、图像采集模块、图像处理模块及图像分析模块;所述plc模块,用于当检测车辆到达检测区域,启动瑕疵检测程序,并根据检测到的车身前进距离,对车身上的瑕疵进行精细定位;所述图像采集模块,包括光源模块、相机阵列模块及图像采集程序模块;所述图像处理模块,用于对待测车辆的图像进行处理,识别车身上的瑕疵,并对识别到的瑕疵进行分析,判定瑕疵类别及大小;所述图像分析模块,用于结合车身三维数据、所述plc模块传输的车身前近距离数据确定瑕疵在车上的位置,并在图像上进行标记。2.根据权利要求1所述的基于机器视觉的漆面瑕疵检查系统,其特征在于:还包括接口模块,用于实现用于plc、主机、数据库之间的数据传输。3.根据权利要求1所述的基于机器视觉的漆面瑕疵检查系统,其特征在于:所述光源模块,用于使瑕疵呈现出清晰的图像特征,便于后续的算法检出;所述相机阵列的排布模块,使相机的拍摄范围完整覆盖于整个车身,同时提高相机拍摄精度;所述图像采集程序模块,用于持续获取摄像单元摄取待测车辆的影像。4.根据权利要求1所述的基于机器视觉的漆面瑕疵检查系统,其特征在于:还包括结果输出模块。 在现代自动化生产中,机器视觉将会在工况检测、成品检验、质量控制等领域被广泛应用。上海工业质检汽车面漆检测设备供应商家
随着汽车市场不断消费升级,漆面外观及质量受到越来越多的关注。工艺水平及生产环境等不确定性因素会造成涂层表面产生不同程度的缺陷。目前涂装漆膜缺陷主要依靠人工检测,劳动成本高,主观影响大,制约了涂装的生产效率。此外,靠人工不能达到完全准确的质量判断,增加子返工成木.限制了企业扩大产能,甚至还可能会造成用户抱怨,对企业声誉造成影响。近年来,随着工业信息化和智能化的发展,涂装漆面缺陷检测对自动化、智能化生产模式的需求日益增长。机器视觉作为1种新兴技术,具有高效、稳定和自动化程度高等特点,为漆面缺陷检测系统的研发奠定了理论基础。基于机器视觉的检测方法可以较好地解决传统人工检测遇到的时间长、工作量大、效率低等问题。 龙岩工业质检汽车面漆检测设备很大程度的保证了高亮漆面的表面外观缺陷检测效果,避免了杂散光对检测结果的影响。
机器视觉是将图像处理、模式识别、计算机技术、人工智能等众多学科高度集成和有机结合而形成的一门综合性技术。一般地说,机器视觉是研究计算机或其他处理器模拟生物宏观视觉功能的科学和技术,也就是用机器代替人眼来做测量和判断。基于计算机视觉的表面缺陷检测技术已经较好地应用在视觉检测各个领域中,它是确保自动化生产中产品质量的一个非常重要的环节。近几年,表面缺陷自动检测技术开始在汽车车身漆面瑕疵的检测领域发展,这种漆面瑕疵自动检测技术有速度快、效率高、精度高、检测范围广以及稳定性强等优点。
深度学习算法主要是数据驱动进行特征提取和分类决策,根据大量样本的学习能够得到深层的、数据集特定的特征表示,其对数据集的表达更高效和淮确、所提取的抽象特征魯棒性更強,泛化能力更好,但检测结果受样本集的影响较大。深度学习通过大量的缺陷照片数据样本训练而得到缺陷判别的模型参数,建立出一套缺陷判别模型,终目标是让机器能够像人一样具有分析学习能力能够识別缺陷。深度学习算法基于TensorFlow和Keras框架,常用的深度学习算法有ResNet、MobileNet、MaskR-CNN和FasterR-CNN等。FasterR-CNN是以RPN(注意力网络)和CNN(卷积神经网络)为算法框架,其中RPN用于生成可能存在目标的候选区域(Proposal),CNN用于对候选区域内的目标进行识别并分类,同时进行边界回归调整候选区域边框的大小和位置使其更精淮地标识缺陷目标。FasterR-CNN相比前代的R-CNN和FastR-CNN比较大的改进是将卷积结果共享给RPV和FastR-CNN网络,在提高准确率的同时提高了检测速度。总体来讲,传统图像算法是人工认知驱动的方法,深度学习算法是数据驱动的方法。深度学习算法一直在不断拓展其成用的场景.但传统图像方法因其成熟、稳定等特征仍具有应用价值。目前。 我们的检测系统改变了现在人工检测耗时过长、一次检出率低等缺陷,同时可以降低人工成本。
隧道式缺陷检测系统采用门拱框架来布置光源和相机。该系统的检测硬件由主检测站、后盖检测站2部分组成。主检测站安装在面漆存储线,用于检测前盖车顶和两侧面:后盖检测站安装在烘房出口横移机处,用于检测后盖。采用编码器+激光测距仪方案来支持车身毫米级的定位,采用条纹光反射漆面瑕疵.采用高效布局的高清相机进行高速拍摄,所获取的图片作为系统的输人。通过后端视觉分析系统对图像数据进行清洗、识别后,生成漆面缺陷的坐标、大小、类别和在车身上的投射图,作为系统的输出。隧道式缺陷检测系统可以实现小,缺陷检出率可以达到98%以上,单车检测时间30~60s.比较大可实现单线120JPH(每小时过车数)的检测能力,单线投资600~800万元,隊道式缺陷检测系统结构简单,可通过软件设置来实现多车型覆盖,投资维护成本较低,但受制于光源及相机的布置,支持2D图像检测,对手凹凸、缩孔等3D缺陷识別效率不高。 从而切实有效地帮助客户提升产能和效率。天津代替人工汽车面漆检测设备源头厂家
汽车面漆检测设备可应用于不同行业、不同应用的生产和制造过程中的质量控制。上海工业质检汽车面漆检测设备供应商家
既要负责对缺陷的检测,又要在发现缺陷后及时进行处理,因而导致在检查与处理过程中需要消耗更多的时间。与此同时,由于人工检测还存在较多的缺陷漏检情况,因此在正常的生产流程中,还容易造成二次返修缺陷的问题。但是上述情况在自动检测系统应用下可以有效避免,返修工人不需要进行检测的工作,而只需要对缺陷进行处理即可,由此实现了更精细化的分工,可以实现降低缺陷漏检、提升检测质量的目标。随着工业科技的进一步发展,汽车涂装生产技术与检测流程也会持续升级,逐步向高智能化与全自动化发展。因此在机器视觉辅助下,汽车车身涂膜表面质量的自动化检测技术展现出重要的应用价值,其通过机器功能代替了人工检测的过程,不仅可以进一步防止缺陷遗漏,而且还能有效提升车身的油漆质量,甚至还通过降低劳动强度,提升了生产线的自动化率,是促进汽车质量检测过程工作效率的重要支持,也必将成为未来车厂的重要发展趋势。上海工业质检汽车面漆检测设备供应商家
领先光学技术(江苏)有限公司成立于2019年,公司总部地址位于武进区天安数码城内独栋12-2#写字楼。我们的种子企业“ling先光学技术(常熟)有限公司”成立于2014年,是国家高新技术企业、科技型中小型企业、江苏省民营科技企业、雏鹰企业。知识产权80余项(发明专利8项)。内核团队:教授2名、博士2名、行业渠道关键人4人。长期稳定与复旦大学、大连理工大学合作。底层技术包括:光学(相位偏折、白光干涉、白光共焦、深度学习);MicroLED(发光器件、透明显示、微型投影)。是做一件“利用光学进行工业质量检测设备的生产和制造”。自主开发光学系统和底层内核算法,拥有十年以上行业经验,主要应用于:汽车玻璃检测行业、片材检测行业、半导体材料检测行业,我们的战略新产品:微米级光刻机已经完成版流片,也正在一步步趋于稳定和成熟。公司在科技的浪潮中,已经具有将内核技术转化为产品的经验与能力。公司是高科技、高成长性企业,公司不断的夯实自身技术基础,愿成为中国工业发展中奠基石的一份子,打破国外的智能装备的,树名族自有高技术品牌。
它可以测量动力电池的长度、高度、宽度和其他尺寸,并检测诸如毛刺、损坏/泄漏、极片折叠、边缘密封中的异物、突起、针式、凹痕、划痕/压痕、污垢和表面褶皱等缺陷。机器检验生产的柔性和自动化。在大规模工业生产过程中,质量检测对于一个生产企业来说是非常重要的,因此必须防止不良品的泄漏。产品一旦传递给客户,会对厂商的声誉产生很大的影响。因此,在汽车制造企业中使用机器视觉检测可以提高生产效率和自动化程度,实现生产质量的自动检测,减少次品,保证产品质量的稳定性和产品的竞争力。这对于维护品牌形象和客户满意度至关重要。莆田光学方法汽车面漆检测设备品牌汽车面漆检测设备为了提高车身漆面缺陷检测的效率和准确性,本研究利...