“免疫沉淀”一般是指采用固定在固相支持物上的结合蛋白,进行小规模的蛋白质亲和纯化的实验。更确切地说,IP是采用固定在微珠支持物(一般是琼脂糖树脂)上的特定抗体,从复杂的混合物中,纯化单一抗原的实验。固定化蛋白质复合物的组装既可以分步进行,也可以一步完成。 常见的加样顺序:抗体和样本(如细胞裂解物)一起孵育,然后加入亲和微珠,用于捕获抗...
查看详细 >>细胞被支原体污染后可能会出现以下几种情况: 1. 生长速度变慢:支原体污染的细胞生长速度可能会减慢,甚至停止生长。 2. 形态改变:部分细胞可能会变圆,从培养瓶壁脱落。有些细胞在支原体污染后,形态变化可能不明显,但有些细胞可能会出现体积增大、细胞碎片增多等现象。 3. 培养液pH变化:支原体污染的细胞可能导致培养液p...
查看详细 >>细胞培养中支原体检测出现假阳性结果可能由以下原因引起: 1. 扩增产物污染:PCR扩增产生的大量DNA拷贝若未妥善处理,极微量的污染就可能导致假阳性结果。 2. 引物设计不当:引物设计不够特异性,可能会与非目标序列发生反应,导致非特异性扩增。 3. 试剂质量问题:使用的dNTPs、引物、DNA聚合酶等试剂质量不佳,可...
查看详细 >>支原体是细胞外生存的 小微生物,是一类缺乏细胞壁的原核细胞型微生物,大小一般在0.2~0.5um之间,呈高度多形性,有球形、杆形、丝形、分枝状等多种态。 1、支原体存在于我们周围,他可能就如尘埃一样存在于我们的环境中 2、可透过一般的滤膜,所以不要寄希望于过滤可以清楚支原体污染的液体 支原体对培养细胞的污染发生...
查看详细 >>支原体去除试剂使用后,对支原体的检测可能会有影响。一些支原体去除试剂通过特异性地与支原体膜结合、改变支原体膜的通透性来杀死支原体,而对真核细胞几乎没有影响。然而,某些情况下,去除试剂可能会对细胞的活力和形态产生一定的影响,尤其是在去除剂作用期间。此外,如果去除剂的效果不彻底,可能会导致细胞再次被支原体污染。 需要注意的...
查看详细 >>LAMP法,即环介导等温扩增技术(Loop-mediated isothermal amplification),是一种在恒定温度下进行的核酸扩增方法。它由日本学者Notomi于2000年开发。LAMP法检测有以下特性: 快速高效:LAMP技术可以在1小时内把几拷贝的目的序列迅速扩增到10^9^~10^10^拷贝,扩增效率高。 ...
查看详细 >>在科研中,支原体检测是确保细胞培养纯净性的重要环节。以下是一些在科研中常见的支原体检测方法: 1. 支原体培养法:这是一种传统的检测方法,通过将细胞培养物接种到特定的培养基中,观察是否有支原体生长。这是直接的检测方法,但耗时较长,通常需要数周时间。 2. DNA染色法:使用荧光染料(如Hoechst或DAPI)染色细胞核...
查看详细 >>免疫沉淀Co-IP实验中磁珠还是琼脂糖珠的选择取决于客户实验情况。 琼脂糖珠海绵状的结构 (直径 50-150 μm) 可以结合抗体 (继而结合靶蛋白) ,它能够直接高效、快速结合抗体,而不需借助特殊的专业设备。琼脂糖珠呈多孔结构,这使得它们拥有更大的表面积可与蛋白质相互接触,具有更高的结合载量。 与琼脂糖珠不同,磁...
查看详细 >>免疫沉淀技术(Immunoprecipitation,简称IP)是一种生物化学方法,它利用特异性抗体对抗原进行亲和纯化。在含有目的抗原的细胞裂解液中加入特定的抗体以及Protein A/G-Beads(预先将Protein A/G固定结合在磁珠上),根据抗原与抗体、Protein A/G与抗体的Fc的特异性,形成“抗原-抗体-Prot...
查看详细 >>一步法支原体检测试剂盒的防污染版本通常采用等温扩增技术,如LAMP(Loop-Mediated Isothermal Amplification)原理,通过支原体特异性引物在恒温条件下对样本进行检测,终通过颜色变化确定样品中是否含有支原体污染。这种方法的优势在于: 1. 快速检测:可以在较短的时间内完成检测,通常在60分钟以内...
查看详细 >>ChIP(染色质免疫沉淀)实验是一种用于研究蛋白质与DNA相互作用的技术。以下是ChIP实验的实验方法概述: 1. 交联:将细胞与交联剂(如1%甲醛)孵育,通常在室温下进行10-15分钟。 2. 终止交联:添加甘氨酸以终止交联反应,孵育5分钟。 3. 收集细胞:通过离心收集细胞,并用PBS洗涤以去除交联剂。 4...
查看详细 >>Co-IP(免疫共沉淀)技术主要用于研究蛋白质之间的相互作用,其应用场景如下: 1. 蛋白质相互作用网络的鉴定:Co-IP可用于构建蛋白质相互作用网络,发现目标蛋白的结合伙伴。 2. 信号传导途径的研究:通过Co-IP技术,科学家们发现了许多关键的细胞信号通路,如MAPK和PI3K/Akt通路等,为深入理解这些通路的功能和...
查看详细 >>